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Abstract. This paper reports the development and implementation of a Genetic
Algorithm (GA) based on welding sequence optimization in which a structural
deformation is computed as a fitness function. Moreover, a thermo-mechanical
finite element analysis (FEA) was used to predict deformation. Elitism selection
approach has been used to ensure that the three best individuals are copied over
once into the next generation to expedite convergence by preserving qualified
individuals having the potential of generating optimal solution. We exploited
a sequential string searching algorithm into single point crossover method to
avoid the repetition of single beads into the sequence. We utilized a bit string
mutation algorithm by changing the direction of the welding from one bead
chosen randomly from the sequence to avoid the repetition of the weld seams
in the sequence. We computed the minimum number of iterations required for
elitism GA based on the general Markov chain model of GA. Welding simulation
experiments were conducted on a typical widely used mounting bracket which
has eight seams using well-known software Simufact R©. Simulation results were
validated through a experiment and a fair amount of agreement was achieved in
terms of deformation pattern. This algorithm allowed the reduction up to (∼80%).
Finally elitism-based GA effectively reduces the computational complexity over
exhaustive search.

Keywords: Genetic algorithm, welding deformation, AI application, welding
sequence, welding optimization.

1 Introduction

Welding is the most common metal joining process [7]. It is widely used in various in-
dustries such as automotive, shipbuilding, aerospace, construction, gas and oil trucking,
nuclear, pressure vessels, heavy and earth-moving equipment [18,11]. Nevertheless,
welding deformation plays a negative role in the process having high impacts in several
ways, such as constraints in the design phase, reworks, quality cost and overall capital
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expenditure. Welding sequence optimization significantly reduces welding deforma-
tion. The conventional approach is to select the best sequence by experience using a
simplified design of experiments which often does not offer an optimal sequence [15].
Welding deformation can be numerically computed through finite element analysis
(FEA) where thermo-mechanical models are commonly used. FEA offers reasonable
solutions for various welding conditions and geometric configurations. However, under
certain circumstances it can be computationally very expensive and time consuming.

The optimal welding sequence is olnly guaranteed using a full factorial design
procedure. In this sense, the total number of welding configurations (N) are computed
by N = nr× r!, where n and r are the number of welding directions and beads (seams)
respectively. These possible configurations grows exponentially with the number of
welding segments. For example, in this research we have used eight weld seams and two
welding directions, hence the number of welding configurations for exhaustive search is
10,321,920. Considering a practical scenario, a complex weldment like an aero-engine
assembly might have between 52 and 64 weld segments [12]. Therefore, full factorial
design is often practically infeasible even using FEA.

In this paper, we implement a GA for welding sequence optimization. We make the
following technical contributions. First, deformation based GA significantly reduces
the computational complexity over extensive search. In the study case proposed in
this paper, we achieved the optimal solution through GA after executing 72 welding
configurations. In addition, this is the minimum number of iterations necessary to find
the pseudo-optimal solution, which was found based on the general Markov chain
model of GA. Second, we exploited a fitness function consisting of the inverse of
the maximum structural deformation for welding sequence optimization. Third, we
facilitated the convergence of the GA through the elitism selection approach in which
we copied the three best individuals into the next generation and preserved the qualified
individuals which possess high probability of providing an optimal solution. Fourth, we
adjusted the single point crossover method for welding sequence optimization to avoid
the repetition of single beads in the welding sequence by blending a sequential string
searching algorithm into the single point crossover method. Finally, we implemented
the bit string mutation algorithm by altering only the direction of welding instead of
changing the bead itself to avoid seam repetition. One bead is selected randomly.

Gas Metal Arc Welding (GMAW) simulation experiments were conducted through
the well-known simulation software Simufact Welding R©. The average execution time
for each welding configuration is 30 minutes using a workstation with two Intel R©

Xeon R© @2.40 GHz, 48G GB of RAM and 4 GB of dedicated video memory. The study
case in this paper is a mounting bracket which is widely used in telescopic jib [5] and
automotive industries [21,10] among others. Simulation results were validated through
real welding experiment. There exists a high agreement among the results of simulation
and experiment in terms deformation pattern. Experimental results demonstrate that
best welding sequence can reduce significant amount of structural deformation (∼80%)
over worst sequence.

The organization of the paper is as follows. Section 2 presents literature review.
Section 3 discusses the thermal and mechanical analysis of finite element based welding
simulation method. Proposed deformation based GA for welding sequence optimization

18

Jesus Romero-Hdz, Sinai Aranda, Gengis Toledo-Ramirez, Jose Segura, Baidya Saha

Research in Computing Science 121 (2016) ISSN 1870-4069



and its convergence analysis is presented in Section 4. Results are demonstrated in
Section 5. Section 6 concludes this work. Relevant references are listed at the end of
the paper.

2 Literature Review

Concerning the welding deformation problem this section overviews five relevant pa-
pers published in the last decade. Chapple et al. [4] have developed a GA approach
for welding distortion optimization from two perspectives: (i) weld removal optimiza-
tion and (ii) a combination of weld removal and welding sequence optimization. They
proposed a fitness function in terms of total distortion in a critical region as shown in
Equation 1. However, constrains on stress and stiffness were added in weld removal
optimization to prevent removing many weld seams. A simplified FEA was used for
fitness function evaluation:

F = Min(Max(Di)) if Si > T,

i = 1,2,3...N i ∈ Rc,
(1)

where Di is the total deformation for all nodes i in the critical region Rc, Si is the stiffness
of the structure and T is the minimum stiffness defined value. Total deformation is
computed by the following equation:

Di =

√
dxi

2 +dyi
2 +dzi

2, (2)

where dxi ,dyi , and dzi are the deformations of node i along x,y, and z axis respectively.

Islam et al. [11] have implemented GA in order to minimize the distortion in welded
structures. They exploited a fitness function in terms of the maximum distortion on
the overall structure. They have a conditional that includes a penalty term which is
proportional to the number of nodes on the weld seam that have temperature less than
melting value Equation 3. The penalty term determines upper and lower bounds for
welding process parameters such as current, voltage and speed. They also defined six
variables for possible welding direction. A thermo-mechanical FEA was carried out
on a specimen as well as an automotive part. Experimental tryouts were done on a
specimen using GMAW process:

F =

{
g IF Q = 0
g+M1 IF Q > 0

}
, (3)

where
g = Min(Max(Di)), (4)

M1 = 100Q. (5)

Di is the total deformation given by Equation 2, Q are the number of nodes in the
weld seam that are below the melting point; M1 is a penalty term that is proportional
to Q.
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Mohammed et al. [19] present an optimization procedure where GA and FEA min-
imize the welding induced distortion. The fitness function (Equation 6) used in their
work is in terms of displacements along Z geometrical axis. This fitness function was
developed for the simplified model of an aero-engine part where the distortion on Z axis
dominates the other ones:

Min F = Max(|(dz)i|),
i = 1,2,3, ...,N,

(6)

where dz is the deformation on z axis and N the total amount of nodes.
Liao [16] presents an implementation of GA for searching the optimal weld pattern

in a spot welding process. The proposed fitness function is computed in two ways,
first, in a deterministic mode which means the future states depend from the previous
ones. Second, in a stochastic mode where the future states do not depend from the
previous ones. FEA was used to compute the fitness function. The fitness function for
the deterministic mode is shown in Equation 7:

F =
n

∑
i=1

w1i(Di)
2,

i = 1,2,3, ...,N,

(7)

where w1i is a weight factor that determines the importance of each node; Di is the total
deformation on all the nodes N. The fitness function for the stochastic mode is shown
in equation 8:

F =
n

∑
i=1

w1i(Ui)
2 + w2i(Vi),

i = 1,2,3, ...,N,

(8)

where w1i and w2i are weights, Ui is the average deformation on every single node and
Vi is the variance of the deformation.

Xie and Hsieh [22] have implemented GA for finding a combined clamping and
welding sequence. A multi-objective fitness function is taken into account to minimize
cycle time (gun travel path) and assembly deformation as shown in Equation 9. FEA
was used to evaluate the fitness function on automotive parts joined by spot welding
process:

Min F = w1
Di

D0i
+w2

C
C0

,

i = 1,2,3, ...,N,

(9)

where w1 and w2 are weights that define the importance of each sub-function; Di is the
total deformation on all nodes for the actual generation. D0i is the total deformation
on all nodes for the initial generation; C is the cycle time for the actual generation and
C0 is the cycle time for the initial generation. Notice that Di

D0i
and C

C0
are considered as

normalized functions because the units of deformation and cycle time are different.
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3 Welding Simulation Framework

In order to present our approach we overview the welding simulation framework. This
is important because the fitness function is computed using FEA.

3.1 Thermal Analysis

Weld process modeling (WPM) is quite complex task because of the physics of heat
generation, specially for fusion procesess like GMAW. The fundamental principle that
defines the heat source is the law of conservation of energy [7]. Typically, the com-
plexity of heat generation physics in the weld puddle is simplified by using a heat
input model. The classical approach in Computational Welding Mechanics (CWM) is to
ignore fluid flow and use a heat input model where heat distribution is prescribed. The
given heat input replaces the details of the heat generation process and focus on larger
scales. Moreover, the modeling of fluid flow and pertaining convective heat transfer
may be integrated with a CWM model. The most common used model for fusion
welding processes is the well-known Goldak double ellipsoidal heat distribution [7].
This heat input model combines two ellipsoidal heat sources to achieve the expected
steeper temperature gradient in front of the heat source and a less steep gradient at the
trailing edge of molten pool. This two heat sources are defined as follow:
Front heat distribution:

Q(x′,y′,z′, t) =
6
√

3 f f Qw

π
√

πabc f
e(
−3x′2

a2 )e(
−3y′2

b2 )e
(−3z′2

C f
2 )

. (10)

Rear heat distribution:

Q(x′,y′,z′, t) =
6
√

3 frQw

π
√

πabcr
e(
−3x′2

a2 )e(
−3y′2

b2 )e
(−3z′2

Cr2 )
, (11)

where f f is the fraction factor of heat deposited in the front part, fr is the fraction factor
of heat deposited in the rear part. Those factors must satisfy the relation f f + fr = 2. a
is the width, b is depth, c f is the length of the front ellipsoid and cr is the length of the
rear ellipsoid Figure 1.

These parameters are physically related to the shape of the weld puddle. Width and
depth are commonly taken from the cross section, the authors recommend to use a half
of parameter a for the front fraction and two times a for the rear fraction. The heat
available from the heat source is defined by:

Qw = ηIE, (12)

where η is the heat source efficiency, I is the current (A) , E is the voltage (V ).
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Fig. 1. Goldak double ellipsoidal model.

Thus the heat input model in CWM must be calibrated with respect to experiments.
Therefore, the classical CWM models have some limitations in their predictive power
to solve different engineering problems. For example, they cannot prescribe what pen-
etration a given welding procedure will give. The appropriate procedure to determine
the heat input model is therefore important in CWM [17].

FEA software solves this time dependent system of partial differential equations
on a domain defined by the mesh used in FEA. The domain is dynamic because of
it changes with each time step as filler metal is added to the weld pass. The initial
condition is often assumed to be the ambient temperature, but the domain can be initial-
ized to any initial temperature field. The heating effect of the arc is often modeled by a
double ellipsoid power density distribution that approximates the weld pool as measured
from macro-graphs of the cross-section of several weld passes. A convection boundary
condition q = h(T −Tamb) with convection coefficient h and ambient temperature Tm
usually is applied to external surfaces. The FEM formulation of the heat equation leads
to a set of ordinary differential equations that are integrated in time using a backward
Euler integration scheme.

3.2 Mechanical Analysis

The temperature history from the thermal analysis is used as a series of loads in the
structural analysis. In this phase, the temperature history from the thermal cycle of each
node is taken as an input and it is used as a node load with temperature dependent
material properties. The mesh for the mechanical analysis was also used for the thermal
analysis where each increment of weld deposition corresponded to one load step. The
total strain εtotal (assuming negligible contribution from solid state phase transforma-
tion) can be decomposed into three components as follows: εtotal = εe +εp +εth, where
εe,εp, and εth represent elastic, plastic and thermal strain respectively. In the welding
process, changes in stress caused by deformation are assumed to travel slowly compared
to the speed of sound. So, at any instant, an observed group of material particles is ap-
proximately in static equilibrium, i.e., inertial forces are neglected. In rate independent
plasticity, viscosity is zero and viscous forces are zero. In either the Lagrangian or
the Eulerian reference frame, the partial differential equation of equilibrium is, at any
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moment given by the conservation of momentum equation that is mentioned below [6]:
Conservation of Momentum Equation

∇σ+ f = 0,
σ = Dε,

ε = (∇u+(∇u)T +(∇u)T
∇u)/2,

(13)

where ∇,σ, f ,D,ε and u represent partial differential, Cauchy stress, total body force,
temperature dependent material property (elastic matrix relevant to the modulus of
elasticity and Poisson’s ratio), the Green-Lagrange strain and displacement vector re-
spectively. ∇u represents the displacement gradient. The mechanical model is based
on the solution of three partial differential equations of force equilibrium illustrated
in Equation 13. In the FEM formulation, Equation 13 is transformed and integrated
over the physical domain, or a reference domain with a unique mapping to the physical
domain [7]. FEA software solves this partial differential equation for a viscothermo-
elasto-plastic stress-strain relationship. The initial state often is assumed to be stress
free. Dirichlet boundary conditions constrain the rigid body modes. The system is
solved using a time marching scheme with time step lengths of approximately 0.1
second during welding and 5 second during cooling phase.

4 Welding sequence optimization framework

GA emulate natural selection of a set of individuals in order to search the best solution to
a problem [8]. The genetic configuration of each individual is a possible solution. The
algorithm starts with an initial population and those are submitted to an evolutionary
process in such way that the best adapted individuals will continue to reproduce among
them and over several generations the best adapted stands out. We tailor the GA for
the welding sequence optimization: selection, cross-over and mutation to avoid the
repetition of single bead.

4.1 String Representation of Welding Sequence

Being Q a welding application consisting of a set of welding beads and S a set of all
possible sequences of Q, each sequence s ∈ S represents a possible sequence which
minimizes the overall structure deformation. Each sequence has N weld seams, here
called genes s = {x1,x2,x3, . . . ,xN}, these are a combination of real numbers ∀n =
1,2,3, , ...,N. In this approach every seam can be welded in two directions, so it can
be represented by a positive sign i f 	 or ↑ or← or with a negative sign i f � or ↓ or→.

4.2 Initialization of Welding Sequence

The algorithm starts with an initial population P =
{

s j
}

, where elements of the set of
sequences are called “individuals” j = 1,2,3, ...,J. Their genes are generated randomly
and special considerations are taken in order to avoid repeated seam in the same welding
sequence.
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4.3 Deformation Based Fitness Value

Within the scope of natural selection, the individual eligibility is regarded as the de-
gree of adaptability. In this paper the fitness function (Equation 14) returns a real
number (maximum deformation) f

(
sJ

j=1

)
⇒ R that measures the adaptability of each

sequence. Final deformation is computed by FEA:

f (s j) = 1/(Max(Di)+ ε), (14)

where Di is the total deformation on all nodes defined by:

Di =

√
dxi

2 +dyi
2 +dzi

2, (15)

i = 1,2,3, ...,N,

dxi ,dyi , and dzi are deformations at the node i along x,y, and z axis respectively. ε is a
very small number which was used to offer continuity to the fitness function when the
value of the maximum deformation is zero.

4.4 Welding Sequence Selection Algorithm

Selection is an important sub-routine where individuals are chosen from the actual
population for later procreation. Good selection algorithm expedites the convergence
of the welding sequence. As a selection procedure, we first implemented a truncation
procedure where the population is sorted by ascending fitness values, then a proportion
µ of the individuals are taken based on fitness value. The proportion µ is computed by
the fraction of the individual fitness value to the sum of the fitness values of all the
samples as shown in Fig. 2.

Fig. 2. Selection process using an elitism function.
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4.5 Crossover for Generating New Welding Sequences
Crossover is analogous to reproduction, new individuals are created from the selected
parents. Each couple of selected individuals s1 and s2 exchange their genes and make
two new individuals, s′1 = s1 × s2 and s′2 = s2 × s1. Several methods for crossover
are reported in literature such as arithmetic, heuristic, single or multi-point, uniform,
cycle, partially mapped and order [13,9]. In this paper we implemented a single point
crossover as demonstrated in Fig. 3 where a random number defines the cut point
a ∈ [1,N]. Later, the descendants are defined by Equations 16 y 17 respectively:

s′1 =
{
[x1

1, ...x
a
1], [x

a+1
2 , ...xN

2 ]
}
, (16)

s′2 =
{
[x1

2, ...x
a
2], [x

a+1
1 , ...xN

1 ]
}
. (17)

Fig. 3. Single point crossover process.

To avoid the repetition of the weld seam in the same welding sequence during
crossover we implement a REPEATED STRING VALIDATION algorithm, the pseudo-
code of which is illustrated below.

function REPEATED STRING VALIDATION
random number a ∈ [1,N−1];
s′1 =

{
x1

1, ...x
a
1
}

;
s′2 =

{
xa+1

2 , ...xN
2

}
;

for i = 1 : N do
if Π(

√
s′1.∗ s′1) 6=

√
s2(i)′.∗ s2(i)′ then

s′1 = {[s′1]∪ s2(i)′};
end if
if Π(

√
s′2.∗ s′2) 6=

√
s1(i)′.∗ s1(i)′ then

s′2 = {[s′2]∪ s1(i)′};
end if

end for
end function

4.6 Mutation for Generating New Welding Sequences
Mutation alters one or more genes in the individual from its actual configuration. It
occurs during the evolution in a very low incidence according to a defined mutation
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probability. Some of the operators found in literature are bit string, delta, invert and
swap [20,1,14]. In our approach, we have used a bit string operator in order to change
only the direction of welding, rather than the welding seam itself to avoid the repetition
of the weld seam (Fig. 4).

Fig. 4. Mutation using a bit string operator.

4.7 Elitism Based Welding Sequence Selection Algorithm

The Elitism function is a practical variant that ensures that the best individual in the
current population sbest ∈ Pt and current generation t is carry over to the next generation
Pt+1 (Fig. 2). Elitist based selection algorithm guarantees that the convergence obtained
by the GA will follow monotone decreasing behavior over generations, [sbest ∈ Pt ]→
Pt+1.

4.8 Pseudo-code and Flowchart of the Proposed Iterative GA for the Welding
Sequence Optimization

This GA function is a repetitive process where the population is going to be changing
over generations: Pt = (s1(t), s2(t), ...sJ(t)) ∈ S. The pseudo-code for the proposed GA
based welding sequence optimization is given below.

function GA(Min D : Q)
Input: P0 = (s1(t), s2(t), ..., sJ(t)) ∈ S
Output: sbest , the best sequence that shows minimum deformation.

t← 0;
initialize Pt ∈ S;
evaluate f

(
sJ

j=1

)
;

while !terminating condition do
t ++;
Select Pt from Pt−1 based on the relative importance of the value of the

individual fitness function f (s j); /* Priority given to the welding sequences based
on less deformation */

crossover Pt ← Pt ; /* String searching based single point crossover */
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mutation Pt ← Pt ; /* Change the direction of the welding of one seam */
evaluate f

(
sJ

j=1

)
;

elitism Pt ← sbest from Pt ; /* Elitism based selection approach */
end while
return sbest from Pt .

end function

In Figure 5 we present a flowchart where we describe at detail our GA based welding
sequence optimization approach.

Fig. 5. GA based welding sequence optimization approach.

4.9 Convergence Analysis of the GA

For a general Markov chain model of GA with elitism, an upper bound for the number
of iterations t is required to generate a population S+ consisting of minimal solutions
has been generated with probability α ∈ (0,1) [2,3], is given by

t ≥ d ln(1−α)

nln(1−min{µl ,(1−µ)l})
e, (18)

where l is the length of the chains that represent the individual, n is the population
size and µ ∈ (0,1) is the mutation rate. dxe is the smallest integer greater than or equal
to x. Equation 18 reaches to minimum when µ = 0.5. For faster convergence, in our
experiment we chose the value of µ = 0.5 since the thermo-mechanical finite element
analysis based welding simulation model is computationally very expensive.
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5 Experimental Results

The organization of this section is as follows. First we introduce the study case. Second,
we list the parameters used for this study. Third, we present convergence analysis of
proposed GA. Fourth, we describe the effects of welding sequence on welding process
optimization. Fifth, we show experimental validation of the simulation results. And
finally, we show a comparative study: Simulation vs real experiment.

5.1 Study Case

We chose a study case of welding a mounting bracket shown in Fig. 6 and 7 which is
typically used in telescopic jib [5], automotive industries [21], and cars [10]. We con-
ducted a simulation experiment of GMAW process using popular FEA software. [11].
We implemented a GA algorithm for choosing the best welding sequence having min-
imum deformation and we demonstrated the effects of welding sequence on the weld
quality (structural deformation) by analyzing the structural deformation caused by weld-
ing of the four sequences (the best two and worst two found by GA). We used the same
parameters for all the sequences (Table 1). We divided the welding bead into eight
segments as shown in Fig. 7. In Fig. 6 we show geometries of different mounting brack-
ets that can be found frequently in heavy equipment, vehicles, ships. Fig. 7 illustrates
the engineering drawing with all specifications of the mounting bracket used in this
experiment.

Fig. 6. Different mounting brackets available in the market as an example of welded parts.

Fig. 7. Engineering drawing of the study case with 8 seams.
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5.2 Parameters Used for this Study

Table 1 shows the GA parameters used in the simulation experiment. We considered
12 generations to converge the GA algorithm, initial population size as 6, crossover
probability as 50%. We copy the three best candidates of the current generation to
the next generation using elitism selection mechanism. We implemented single point
crossover method for new sample reproduction. We also implemented single bit string
mutation operator and changed the welding direction of a randomly selected welding
seam instead of welding seam itself to avoid the repetition of the welding seam in the
sequence.

Table 1. GA parameters for welding sequence optimization.

Parameter Value
Initial population size 6
Generations 12
Elitism candidates 3
Crossover % 50%
Mutation operator bit string
Crossover operator single point
Qty of seams 8
Possible welding directions 2

We have validated the result of the simulation experiment. Since conducting the real
welding experiment is costly, we have conducted the real experiment for only the best
sequence found by the GA. Fig. 8 illustrates the flowchart of the real experiment.

Fig. 8. Flowchart of the real experiment.

5.3 FEA Results and Convergence Analysis of the Proposed GA

The best, second best, worst and second worst sequences are (+6,+5,−1,+8,−2,−3,+4,−7),
(+6,+5,−1,−8,−2,−3,+4,+7), (−3,+4,−7,+6,+5,−1,+8,−2) and (−3,+4,−7,+6,+5
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,−1,−8,−2) respectively (Fig. 9). Their maximum structural deformation values are
0.55mm.,0.57mm.,2.43mm., and 2.42mm. respectively (Fig. 10). We carried out the
GA experiment for twelve generations and we conducted the convergence analysis
that is shown in Fig. 11. Fig. 11(a) shows the behavior of the individual in terms of
deformation over generations for four sequences (best, second best, worst and second
worst). Elitism based selection method expedites the convergence of the GA. Fig. 11(b)
shows the monotonically decreasing values of the deformation over twelve generations.

Fig. 9. Best, second best, worst and second worst sequences configuration.

Fig. 10. Deformation pattern of best, second best, worst and second worst sequences.
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To compute the minimum number of iterations necessary to ensure finding an op-
timal solution for GA with a prescribed probability α = 0.96, mutation rate µ = 0.5,
number of bits required to represent an individual l = 8, number of individual n = 72 in
equation 18, we get t ≥ d11.42e= 12. We conduct the GA up to twelve iterations since
the computational complexity of the finite element based thermo-mechanical welding
simulation approach is computationally very expensive.

(a) Deformation over generations

(b) Deformation Reduction

Fig. 11. Convergence analysis of proposed GA.

5.4 Effects of Welding Sequence on Welding Process Optimization

Normalized frequency of the deformation and effective stress values are shown in Fig. 12(a)
and 12(b). Fig. 11(b) shows the deformation values of the four sequences in terms of the
percentage. If we consider the deformation value of the worst sequence (red color bar
in Fig. 11(b)) as 100%. Fig. 11(b) shows that best sequence (blue color bar) achieves ∼
80% maximum structural deformation over worst sequence (red color bar). Fig. 11(b)
also demonstrates that both best and second best sequences obtains substantial reduction
of maximum structural deformation over worst and second worst sequences (red and
black bars are much taller than blue and green bars). These results clearly demonstrates
that welding sequence has significant effect on welding deformation.
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(a) Deformation

(b) Effective Stress

Fig. 12. Normal distribution of both experimental and simulation fitness values.

5.5 Experimental Validation of the Simulation Results

Thermal analysis was validated using thermocouples. In Figure. 13 we show the tem-
perature curve acquired in one seam. It can be seen in the curve two peaks, the first
one is the heat transferred from the other side of the plate over the time when the seam
located there is being welded. On the other hand, the second peak is the temperature
when the heat source reaches the thermocouple. It is observed that there is a good
agreement between acquired temperatures of the welding simulation and thermocouples
used in real experiment. Fig. 14 shows a three dimensional (3D) comparison between

Fig. 13. Temperature acquired with thermocouples.
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the structural deformation found in the real and simulation experiment for the best
sequence (+6,+5,−1,+8,−2,−3,+4,−7). For 3D visualization of real experiment,
we used Geomagic Control R© software with a Creaform R© optical scanner and for simu-
lation experiment, we used simufact R© FEA software [11]. Fig. 14 demonstrates a good
agreement between the structural deformation found in real and simulation experiment.

Fig. 14. Structural deformation comparison between real and simulated experiments.

5.6 Comparative Study: Simulation vs Real Experiment

Deformation values found in the experiment are below the predicted values found
in the welding simulation. The difference between them is the cumulative error in
the measurement process. 3D scanner has 0.085 mmm. of error, welding positioner
has 0.1 mm of error and typically welding simulation is around 20% error (0.13 mm
in this case). Lindgren [17] and Islam [11] showed that the main driving force in
the welding simulation is heat generation process. If the simulation can predict the
weld pool boundary correctly then the temperature field outside the region will also be
correct. Therefore, the heat source model of the welding simulation was validated with
respect to the weld macroetch test as shown in Fig. 15 and a fairly good agreement
was achieved in terms of weld pool boundary shape and size. The red and yellow line
illustrates the weld pool boundary of real and simulation experiment respectively.

6 Conclusion and Future Work

Structural deformation is an important parameter to measure the quality of the welded
structures. Welding sequence plays an important role on welding deformation. In this
paper, the inverse of the maximum structural deformation was exploited as the fitness
function of a proposed GA algorithm for welding sequence optimization. GA was
used to reduce significantly the search space of the exhaustive search. A finite element
based thermo-mechanical analysis was used to compute the deformation. An elitism
selection approach was implemented by copying the three best individuals into the
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Fig. 15. Macroetch test and a comparison between real and simulation experiment.

next generation to expedite the convergence as well as not allowing to destroy the
chromosomes which have high probability to offer optimal solution. We implemented
a sequential string searching algorithm for a single point crossover method to avoid the
repetition of single beads. We changed the welding direction of the bead, rather than the
welding bead itself from the sequence into one bit string mutation algorithm to avoid
the repetition of the weld seam. We conducted a simulation experiment on a mounting
bracket which were widely used in vehicles and other applications. A experiment was
conducted on eight weld seams. Results of simulations were validated through a real
experiment by comparing the temperature recorded by thermocouples kept on different
weld seams with the temperature computed by the thermo-mechanical FEA as well as
comparing the structural deformation of real and simulation experiment. A reasonable
agreement was achieved among the results of simulation and real experiment in terms
of the temperature profile curve and the shape and size of the weld pool boundary.
Elitism based GA algorithm discussed in this paper effectively reduces the computa-
tional complexity over extensive search with significant reduction of overall structure
deformation. We computed and executed minimum number of iterations necessary for
finding the optimal solution of the GA based on the general Markov chain model of
GA.

The proposed research opens up different avenues for welding sequence optimiza-
tion research. In the near future, we would like to develop a multi-objective GA to
incorporate residual stress, temperature, robot time and robot path for welding sequence
optimization. Information of the deformation after welding each seam in a sequence
needs to be investigated for achieving better reduction of welding deformation.

Acknowledgments. The authors gratefully acknowledge the support provided by CONA-
CYT (The National Council of Science and Technology) and CIDESI (Center for En-
gineering and Industrial Development) as well as their personnel that helped to realized
this work.

References

1. Alexandrescu, A., Agavriloaei, I.: Determining the best mutation probabilities of a genetic
algorithm for mapping tasks. The Bulletin of The Polytechnic Institute from Iaşi LVII
(LXI)(Lxi), 10 (2011)

34

Jesus Romero-Hdz, Sinai Aranda, Gengis Toledo-Ramirez, Jose Segura, Baidya Saha

Research in Computing Science 121 (2016) ISSN 1870-4069



2. Aytug, H., J., K.G.: Stopping criteria for finite length genetic algorithms. INFORMS Journal
on Computing 8(2), 183–191 (1996)

3. Aytug, H., J., K.G.: New stopping criterion for genetic algorithms. European Journal of Op-
erational Research 126(3), 662–674 (2000), http://www.sciencedirect.com/science/
article/pii/S0377221799003215

4. Chapple, A., Tahir, Z., Jardine, F.: Weld Distortion Optimisation using HyperStudy. In: The
8th UK Altair Technology Conference. pp. 1–13 (2013)

5. Derlukiewicz, D., Przybyek, G.: Chosen aspects of FEM strength analysis of telescopic jib
mounted on mobile platform. Automation in Construction 17(3), 278–283 (2008), http:
//www.sciencedirect.com/science/article/pii/S0926580507000714

6. Goldak, J.: PVP2010-25770 Challenges in verification of cwm software to compute residual
pp. 1–9 (2010)

7. Goldak, J.A., Akhlaghi, M.: Computational welding mechanics. Springer (2005), http://
www.worldcat.org/isbn/9780387232874

8. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edn. (1989)
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