
Advances in Artificial Intelligence
Theory

Research on Computing Science

Series Editorial Board
Comité Editorial de la Serie

Editors-in-Chief:
Editores en Jefe

Juan Humberto Sossa Azuela (Mexico)
Gerhard Ritter (USA)
Jean Serra (France)
Ulises Cortés (Spain)

Associate Editors:
Editores Asociados

Jesús Angulo (Frane)
Jihad El-Sana (Israel)
Jesús Figueroa (Mexico)
Alexander Gelbukh (Russia)
Ioannis Kakadiaris (USA)
Serguei Levachkine (Russia)
Petros Maragos (Greece)
Julian Padget (UK)
Mateo Valero (Spain)

Editorial Coordination:
Coordinación Editorial

Blanca Miranda Valencia

Formatting:
Formación
Sulema Torres Ramos

Research on Computing Science es una publicación trimestral, de circulación internacional, editada por el
Centro de Investigación en Computación del IPN, para dar a conocer los avances de investigación científica
y desarrollo tecnológico de la comunidad científica internacional. Volumen 16 Noviembre, 2005. Tiraje:
500 ejemplares. Certificado de Reserva de Derechos al Uso Exclusivo del Título No. 04-2004-
062613250000-102, expedido por el Instituto Nacional de Derecho de Autor. Certificado de Licitud de
Título No. 12897, Certificado de licitud de Contenido No. 10470, expedidos por la Comisión Calificadora
de Publicaciones y Revistas Ilustradas. El contenido de los artículos es responsabilidad exclusiva de sus
respectivos autores. Queda prohibida la reproducción total o parcial, por cualquier medio, sin el permiso
expreso del editor, excepto para uso personal o de estudio haciendo cita explícita en la primera página de
cada documento. Se usó la imagen obtenida de la siguiente dirección, para el diseño de la portada:
www.absolutewallpapers.com/wallpapers/3dwallpapers/fractal/fractal_2.jpg. Impreso en la Ciudad de
México, en los Talleres Gráficos del IPN – Dirección de Publicaciones, Tres Guerras 27, Centro Histórico,
México, D.F. Distribuida por el Centro de Investigación en Computación, Av. Juan de Dios Bátiz S/N, Esq.
Av. Miguel Othón de Mendizábal, Col. Nueva Industrial Vallejo, C.P. 07738, México, D.F. Tel. 57 29 60
00, ext. 56571.

Editor Responsable: Juan Humberto Sossa Azuela, RFC SOAJ560723

Research on Computing Science is published by the Center for Computing Research of IPN. Volume 16,
November, 2005. Printing 500. The authors are responsible for the contents of their articles. All rights
reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior
permission of Centre for Computing Research. Printed in Mexico City, November, 2005, in the IPN
Graphic Workshop – Publication Office.

Volume 16
Volumen 16

Advances in Artificial Intelligence
Theory

Volume Editors:
Editores del Volumen

Alexander Gelbukh
Raúl Monroy

Instituto Politécnico Nacional
Centro de Investigación en Computación

México 2005

ISSN: 1665-9899

Copyright © Instituto Politécnico Nacional 2005
Copyright © by Instituto Politécnico Nacional

Instituto Politécnico Nacional (IPN)
Centro de Investigación en Computación (CIC)
Av. Juan de Dios Bátiz s/n esq. M. Othón de Mendizábal
Unidad Profesional “Adolfo López Mateos”, Zacatenco
07738, México D.F., México

http://www.ipn.mx
http://www.cic.ipn.mx

Printing: 500
Impresiones: 500

Printed in Mexico
Impreso en México

Preface

Artificial Intelligence is a branch of computer science aimed at providing the com-
puter elements of human-like behavior such as ability to think, learn by example,
doubt, act, see, and speak. Since its beginning artificial intelligence research has been
influenced and inspired by nature—in the first place, by the way human being accom-
plishes such tasks. Recently, the repertoire of artificial intelligence methods was en-
riched by other naturally inspired optimization techniques, such as genetic algorithms,
swarm intelligence, or ant colony optimization. In addition to creating human-like-
behaving machines, modern artificial intelligence provides a very powerful platform
for solving a wide range of super-complex optimization problems.

This volume presents original research papers on the internal art and craft of artifi-
cial intelligence research: its theoretical foundations, specific techniques, and research
methodologies. It is structured into eight thematic fields representative of the main
current areas of interest within the AI community: Knowledge Representation and
Logic; Constraint Satisfaction; Multiagent Systems and Distributed AI; Computer
Vision and Pattern Recognition; Machine Learning and Neural Networks;
Evolutionary Computation and Genetic Algorithms; Natural Language Processing;
Modeling and Intelligent Control. The next volume of this journal presents original
papers devoted to application of artificial intelligence techniques to practical real-life
problems, from economy and education to creating of physical intelligent robots.

Total of 59 full papers by 145 authors from 20 different countries were submitted
for evaluation, see Tables 1 and 2. Each submission was reviewed by three independ-
ent members of the Editorial Board of the volume. This volume contains revised ver-
sions of 26 papers, by 64 authors, selected for publication after thorough evaluation.
Thus the acceptance rate was 44%. In Table 1, the number of papers by country was
calculated by the shares of all authors of the paper: e.g., if a paper has three authors:
two from Mexico and one from USA, then we incremented the counter for Mexico by
0.66 (two authors of three) and the counter for USA by 0.33. Table 2 presents the
statistics of papers by topics according to the topics indicated by the authors; note that
a paper can be assigned more than one topic.

Table 1. Statistics of authors and papers by country.

Submitted Accepted Submitted Accepted Country Auth Pap Auth Pap Country Auth Pap Auth Pap
Algeria 2 0.6 2 0.6 Lebanon 2 1.0 2 1
Argentina 1 1.0 – –.0 Mexico 43 16.8 30 12
Brazil 11 4.0 – –.0 Netherlands 1 0.2 – –
China 24 10.0 5 2.0 Poland 4 1.0 – –
France 8 3.3 1 0.3 Russia 2 2.0 – –
Germany 1 1.0 – –.0 Spain 8 1.8 4 1
India 4 2.0 2 1.0 Sweden 4 1.0 – –
Italy 2 1.0 2 1.0 Tunisia 2 1.0 – –
Japan 5 2.0 5 2.0 UK 2 1.0 2 1
Korea, South 9 4.0 2 1.0 USA 10 4.2 7 3
 total: 145 59.2 64 26

The academic and editorial effort resulting in this volume was carried out in col-
laboration with, and was supported by, the Mexican Society for Artificial Intelli-
gence (SMIA). We cordially thank all people involved in its preparation. In the first
place these are the authors of the papers constituting it: it is the excellence of their
research work that gives sense to the work of all other people involved. We thank the
members of the Editorial Board of the volume and additional referees. We express our
gratitude to Álvaro de Albornoz, Ángel Kuri, Hugo Terashima-Marín, Francisco J.
Cantú-Ortiz, Leticia Rodríguez, Fernando J. Jaimes, Rogelio Soto-Rodríguez, Hiram
Calvo, Manuel Vilares, and Sulema Torres for their significant contribution at various
stages of preparation of the volume. The submission, reviewing, and selection process
was supported for free by the EasyChair system, www.EasyChair.org.

Alexander Gelbukh
Raúl Monroy

November 2005

Table 2. Statistics of submitted and accepted papers by topic.

Topic Submitted Accepted
Expert Systems / KBS 2 –
Multiagent systems and Distributed AI 10 6
Knowledge Management 3 1
Intelligent Interfaces: Multimedia, Virtual Reality 1 –
Natural Language Processing / Understanding 4 3
Computer Vision 4 2
Neural Networks 11 4
Genetic Algorithms 9 6
Fuzzy logic 4 1
Machine Learning 18 7
Intelligent Tutoring Systems 1 –
Data Mining 4 –
Knowledge Acquisition 3 –
Knowledge Representation 10 4
Knowledge Verification, Sharing and Reuse 3 1
Ontologies 4 –
Qualitative Reasoning 1 1
Constraint Programming 6 2
Common Sense Reasoning 1 –
Case-Based Reasoning 1 –
Nonmonotonic Reasoning 2 1
Spatial and Temporal Reasoning 1 1
Robotics 2 2
Planning and Scheduling 5 3
Navigation 5 2
Hybrid Intelligent Systems 4 1
Logic Programming 2 1
Intelligent Organizations 3 1
Uncertainty / Probabilistic Reasoning 1 –
Bioinformatics 3 –
Philosophical and Methodological Issues of AI 5 1
Other 10 4

Table of Contents
Índice

Page/Pág.

Knowledge Representation and Logic

XML based Extended Super-function Schema in Knowledge
Representation.. 3

Qiong Liu, Xin Lu, Fuji Ren and Shingo Kuroiwa

The Description Logic of Tasks ... 13
Zhang Hui and Li SiKun

A Logic Programming Formalization for Circumscription................ 23
Masahiko Arai

Constraint Satisfaction

Genetic Algorithms for Dynamic Variable Ordering in Constraint
Satisfaction Problems... 35

Hugo Terashima-Marín, René de la Calleja-Manzanedo
 and Manuel Valenzuela-Rendón

Two Hybrid Tabu Scatter Search Meta-heuristics for Solving
MAX-SAT Problems.. 45

Dalila Boughaci, Drias Habiba and Benhamou Belaid

Complete Instantiation Strategy for Approximate Solution
of TCSP55 .. 55

Priti Chandra and Arun K. Pujari

Graphplan Based Conformant Planning with
Limited Quantification ... 65

Alan Carlin, James G. Schmolze and Tamara Babaian

Multiagent Systems and Distributed AI

A Distributed Multiagent Workflow System 79
Cesar Marin and Ramon Brena

Cooperation in multirobotics enviroments ... 89
Félix Orlando Martínez Ríos and Carlos Rodríguez Lucatero

Economics of Cooperation : Social Foraging
in Distributed Systems ... 99

Ashish Umre and Ian Wakeman

Computer Vision and Pattern Recognition

Some Experiments on Corner Tracking for Robotic Tasks111
Victor Ayala-Ramirez, Cruz A. Longoria-Mendez and
Raul E. Sanchez-Yanez

Pattern Decomposition and Associative Processing Applied
to Object Identification...121

Benjamín Cruz, Humberto Sossa and Ricardo Barrón

Object Classification Based on Associative Memories and
Midpoint Operator..131

Roberto A. Vázquez, Humberto Sossa and Ricardo Barrón

Associative Processing Applied to Word Reconstruction in the
Presence of Letter Scrambling ...141

Humberto Sossa, Ricardo Barrón and Benjamín Torres

Machine Learning and Neural Networks

Hybrid strategies and meta-learning: an inquiry into the
epistemology of artificial learning ...153

Ciro Castiello and Anna Maria Fanelli

Comparison of Neuro-Fuzzy Systems with a Defuzzification-Based
Algorithm for Learning Fuzzy Rules ...163

Jean Saade and Adel Fakih

Evolutionary Computation and Genetic Algorithms Intelligent
Genetic Algorithm: A Toy Model Application175

Jaime Mora Vargas, Neil Hernández Gress and
Miguel González Mendoza

Improved Ant Colony System using Subpath Information for the
Taveling Salesman Problem...185

Minyoung Yun and Inkyeom Kim

Building Block Filtering Genetic Algorithm195
Jun Lu, Boqin Feng and Bo Li

Evolutionary Training of SVM for Classification Problems
with Self-Adaptive Parameters...207

Angel Kuri-Morales and Iván Mejía-Guevara

Natural Language Processing

Language Portable Detection for Spanish Named Entities219
Zornitsa Kozareva, Oscar Ferrández, Andrés Montoyo
and Rafael Muñoz

Boosting Applied to Spanish Word Sense Disambiguation...............229
Rocio Guillen

A Cognitive-Based Approach to Adaptive Intelligent Multiagent
Applications ...239

Charles Hannon

Modeling and Intelligent Control

Orthogonal-Back Propagation Hybrid Learning Algorithm for
Interval Type-2 Non-Singleton Type-2 Fuzzy Logic Systems251

Gerardo M. Mendez and Luis A. Leduc

Characterization and Interpretation of Classes Based on Fuzzy
Rules in ill-Structured Domains ...261

Fernando Vázquez and Juan Luis Díaz de León

Differential Evolution Algorithms to Solve Optimal
Control Problems Efficiently ...271

Irineo L. Lopez-Cruz and Abraham Rojano-Aguilar

Knowledge Representation
and Logic

XML based Extended Super-function Schema in

Knowledge Representation

Qiong Liu, Xin Lu, Fuji Ren, and Shingo Kuroiwa

The University of Tokushima,
2-1 Minami Josanjima, Tokushima, Japan 770-8506

{liuqiong,luxin,ren,kuroiwa}@is.tokushima-u.ac.jp

Abstract. In recent years, the usual knowledge representation (KR)
problem in artificial intelligence is how to automatically represent and
transform different kinds of knowledge using one kind of schema. Espe-
cially this problem focuses on representing formal knowledge in natural
language for human understanding. For this purpose, this paper proposes
an extended super-function (ESF) schema to build a novel KR system.
This system can translate the data of stock market or other fields into
the corresponding natural language expression automatically. Moreover,
this system benefits from XML techniques which formalize and construct
all information using the common Web rules to realize the ESF schema.

1 Introduction

In artificial intelligence (AI), knowledge representation (KR) includes two basic kinds of
knowledge objects (formal objects and natural objects) in its fundamental conception.
Formal objects like mathematical entities can be captured exactly and precisely by
machine because of their formality. Natural objects like natural language entities can
be understood easily and commonly by human being through their flexibility. Then
KR provides the representation function to deal with the correspondences between the
formal objects and the natural objects, acting as surrogates in the real world as well as
in the machine space. Given the relationship with human and machine is made closer,
the last role of KR will become more significant and necessary.

In recent years, the KR technique has shown its superiority in knowledge collection
and organization. The natural objects in knowledge base have been organized in highly
structured form to satisfy the requirements that people wish to understand and master
various kinds of knowledge easily by natural objects. The KR system based on nat-
ural objects is most sophisticated, and its construction is depended on some kinds of
logic. Different formal methods (such as predicate logic, fuzzy logic, semantic networks,
frames and related techniques) have been developed to represent natural objects. They
also have been used by expert systems frequently in decision making and reasoning.
The KR system [1–5] based on natural objects has been implemented in almost every
aspect such as weather forecast, letters response, network analysis, disease diagnosis
and so on. All of these systems have been recognized as the considerable enhancement
of KR technique for natural objects management. Because natural objects like human
natural language are complex, irregular, and diverse, the previous KR systems based
on natural objects just act as interfaces to knowledge base, which perform formal tasks

Qiong Liu, Xin Lu, Fuji Ren and Shingo Kuroiwa

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 3-12

separated from nature objects processing. Nevertheless the computational character-
istic of representation and inference in natural objects can improve the efficiencies of
processing all tasks in the KR system. Therefore, the extended super-function (ESF)
schema is proposed to build a novel KR system which processes vast amounts of knowl-
edge systematically like machine and logically, deeply like human being. It is capable to
incorporate both the formal objects and the natural objects. We think the ESF schema
is a new direction in KR technique.

The paper is structured as follow. Section 2 describes the grammar of ESF schema
for KR. In Section 3, the ESF based KR system is realized as example, where the ESF
schema is utilized to produce technical report of stock market from data for non-expert
user. Finally, Section 4 presents a discussion and conclusion of this paper.

2 Extended Super-function Schema

In ESF schema definition, symbol set includes formal objects and natural objects.
Natural language is a symbol set, mathematic expression is a symbol set, music is a
symbol set, and so on. The ESF schema is applied to the translation from one symbol
set to another more variously than from one kind of natural language to another as
SF.

An ESF is a symbol set that denotes the correspondence between source symbol
patterns and target symbol patterns. The definition of symbol pattern is most neces-
sary for ESF, and it will be described firstly. Then we give ESF a definition.

Definition 1: A team of a token n, some attributes A and corresponding values v

can form a symbol pattern pn ::= p[n, A : v].

Definition 2: A symbol pattern p can be sorted into source pattern ps and target
pattern pt according to its origin. A set of source pattern ps and a set of target pattern
pt can aggregate a source pattern set Ps and a target pattern set Pt respectively.

Definition 3: A function from Ps1×· · ·×Psn−1 to Psn is a subset fs of the Cartesian
product Ps1 ×· · ·×Psn, such that for each pair (ps1, . . . , psn−1) in Ps1×· · ·×Psn−1,
there is a unique psn in Psn such that the ordered pair (ps1, . . . , psn) is in fs. The
source pattern psn can be described as psn ::= ps[n, A : fs]

Definition 4: A function from Pt1×· · ·×Ptn−1 to Ptn is a subset ft of the Cartesian
product Pt1 × · · · × Ptn, such that for each pair (pt1, . . . , ptn−1) in Pt1 × · · · ×Ptn−1,
there is a unique ptn in Ptn such that the ordered pair (pt1, . . . , ptn) is in ft. The
source pattern ptn can be described as ptn ::= pt[n, A : ft]

Definition 5: A function from Ps to Pt is a subset r of the Cartesian product
Ps × · · · × Pt, such that for each ps in Ps, there is a unique pt in Pt such that
the ordered pair (ps, pt) is in r.

Definition 6: A set of function fs can aggregate a source function set Fs. A set
of function fs can aggregate a target function set Ft in the same way. A set of func-
tion r can be considered as relation set R. R means the translations between source
patterns and target patterns.

4 Liu Q., Lu X., Ren F., Kuroiwa Sh.

In ESF, the based element is atomic pattern. Any symbol pattern, whose value is
obtained from function, can be defined as a complex pattern. Its value is composed
of some atomic patterns or other complex patterns ordered in function structures.
Therefore, these symbol patterns are not ordered in one layer, they are ordered like
net by functions. The grammar of ESF can be set as a five-tuple.

< Ps, P t, Fs, F t, R >

3 KR System Construction using ESF Schema

We can master the ESF based KR system from three layers (i.e., abstracting layer,
describing layer and implementing layer). The three layers is used for understanding,
detailing and coding the KR system respectively. In this section we specify KR system
in these three layers for understanding.

ESF Source Patterns

ESF Functions & Relations

ESF Target Patterns

Describing Layer

ESF

Processor

Formal Objects

Transform Cases

 Natural Objects

Abstracting Layer

Processor

XML Document

XSLT Stylesheet
XML Document

Implementing Layer

XSLT

Processor

Fig. 1. Fundamental structure of the KR system based on ESF schema

As shown in the top layer of Figure 1, the processor receives the formal objects with
the transform cases, and generates the natural objects. This is a pipeline mechanism.
Here, the transform cases are regarded as principles for guiding processor what to do
and how to do. They are the crucial parts of KR system.

3.1 Transform Case Extraction in Abstracting Layer

There are hundreds s of indicators in use today. Every technical indicator can be re-
garded as one transform case in the abstracting layer of our KR system. The technical
indicator data and its perspective can be considered as the formal objects and the nat-
ural objects of transform case respectively. In this paper, Moving average convergence

XML based Extended Super-function Schema in Knowledge Representation 5

Fig. 2. Moving Average Convergence Divergence i)Upper-oriented arrows marks bear-
ish centerline crossover. ii) Lower-oriented arrows marks bullish centerline crossover.

ps[1, Variable: MACDt-1] ps[2, Variable: MACDt]

ps[3, Boolean: fs1(ps1, ps2)]

fs1(ps1, ps2)= (ps1 <= 0 AND ps2 > 0)= True

r1(ps3) = pt11

quoting function as value in pattern

 putting pattern as parameter in function

getting target pattern through relation

1. searching suitable entry

2. exploring nearest bridge

pt[9, String: positive divergence and

bullish moving average crossover of MACD]

ft5(pt8, pt9)= (After pt9, pt8)

= After positive divergence and bullish moving

average crossover of MACD, the stock is

oversold, and it is considered bullish signal

pt[1, Norn: stock] pt[2, Verb: oversell]

pt[4, Verb: consider] pt[5, Norn: bearish signal]

ft1(pt1, pt2)= Realisation(pt1, pt2)= the stock is oversold

pt[3, Sentence: ft1(pt1, pt2), Subject: the stock]

ft2(pt1, pt4, pt5)= Realisation(pt1, pt4, pt5)

= the stock is considered bullish signal

pt[6, Sentence: ft2(pt1, pt4, pt5), Subject: the stock]

ft3(pt3, pt6)= Referring(pt3, pt6)

= it is considered bullish signal

pt[7, Sentence: ft3(pt3, pt6)]

ft4(pt3, pt8)= Aggregation(pt3, pt8)

= the stock is oversold, and it is considered bullish signal

pt[8, Sentence: ft4(pt3, pt7)]

pt[10, Sentence: ft5(pt8, pt9)] r1(ps3) = pt10

3. obtaining last pattern by recursion

Fig. 3. ESF structures of MACD indicator (source patterns and source functions (left),
target patterns and target functions (right))

6 Liu Q., Lu X., Ren F., Kuroiwa Sh.

divergence (MACD) is extracted as a transform cases from our KR system for clear
specification.

A bullish centerline crossover occurs when MACD moves above the zero line and
into positive territory. This is a clear indication that momentum has changed from
negative to positive or from bearish to bullish. After a positive divergence and bullish
moving average crossover, the bullish centerline crossover can act as a confirmation
signal. Conversely, after a negative divergence and bearish moving average crossover,
the bearish centerline crossover can act as a confirmation signal. (The MACD chart is
illustrated in Figure 2). Then we can get a transform description of MACD:

IF MACD(Day)≥0 AND MACD(Day-1)<0 THEN "after a positive divergence

and bullish moving average crossover of MACD, the bullish centerline

crossover can act as a confirmation signal”
IF MACD(Day)≤0 AND MACD(Day-1)>0 THEN "after a negative divergence

and bearish moving average crossover of MACD, the bearish centerline

crossover can act as a confirmation signal”

3.2 ESF Structure Design in Describing Layer

From abstracting layer to describing layer, we utilize the ESF schema to design the
ESF structure of our KR system detailedly. All non-linguistic inputs are defined as ESF
source pattern; the transform cases are generalized as ESF functions and relations for
reuse. The ESF processor can accelerate the map between the source patterns and the
target patterns through the functions and relations as illustrated in the middle layer
of Figure 1.

Here a transform case (i.e., MACD indicator mentioned above) has been generalized
as corresponding functions and relations by ESF schema in Figure 3 as an example.
In this example every block denotes a pattern, such as atomic or complex one. Every
relation can be considered as a translation bridge between numerable source patterns
and single target pattern. Every function acts as telephone line which is connecting
every user – pattern. We need to emphasize that the process from pattern to function
means putting pattern into function as parameter. On the other hand, the process from
function to pattern is quoting function as value in pattern. These two processes will be
coded in computer language for the actual experiment in following section. The ESF
process consists of three steps. They are marked in Figure 3.

1. Searching suitable entry: We put some source patterns, which will be translated
into natural language, into processor. Then the processor searches source functions’
parameters as the suitable entries for these source patterns. Here the ”suitable” de-
notes the pattern’s domain is consistent with a parameter’s domain or contained by
it. In this example, if the source patterns include other technical indicator information
except the MACD, it is difficult for processor to find the suitable entries.

2. Exploring nearest bridge: After searching suitable entry, the processor explores
downwards, passes numerable functions and finds a nearest relation. Then the proces-
sor can obtain a corresponding target pattern through the relation bridge. There is
a necessary condition in this process. It is all of the numerable functions’ parameters
(from suitable entry to nearest relation) should be filled by source patterns. In this
example, if there is only the MACD(Day) pattern ps1 and not the MACD(Day − 1)

XML based Extended Super-function Schema in Knowledge Representation 7

pattern ps2, the processor cannot find the relation r1.

3. Obtaining last pattern by recursion: If the processor gets the corresponding
target pattern, it will use the correlative target functions structured recursively to get
the corresponding target pattern’s value.

ESF based KR system is a new KR system that has the characters between
template-based and standard KR. This is not only because the ESF based KR system
combines standard KR with templates, but also because it tends to use syntactically
structured templates (here the ”template” in ESF schema is a function. It has more
changes than the common template), and allows the gaps as parameters in them to
be filled recursively (i.e., by filling a gap, a new gap may result). The ESF based KR
system can use grammars to aid linguistic realization. For example, in Figure 5, it
includes lexical items (e.g., referring expression function, aggregation function and so
on) which always exist in standard KR. Therefore, it is difficult to give a definition of
”template based” for our KR system. We think the word – ”function based” is more
suited than ”template based”.

3.3 ESF Structure Realization in Implementing Layer

It is necessary to utilize a ready-made and convenient technique to realize ESF schema
in KR systems. We regard the extensible markup language (XML) is the best choice to
define the ESF pattern. We also select extensible stylesheet language transformation
(XSLT) to describe the ESF function and relation. This section helps the reader master
and apply these ideas to KR problems. We utilize the XML and XSL techniques to
realize ESF schema for building a KR system. As shown in the bottom layer of Figure
1 , in a KR system the ESF patterns in XML is fed into the XSLT processor as one
input, and the functions and relations in XSL is provided as a second input. The output
is then sent directly to user as a stream of HTML, XML or other formats. The ESF
functions and relations in XSL generate the transformation instructions about ESF
patterns, and the patterns in XML provide raw data. It is the implementing layer of
the KR system based on ESF schema.

Pattern construction using XML:

Code 1 – ESF source patterns
<stock symbol="TOPIX" name="Tokyo Stock Exchange Prices Index">

...

<date="2004-08-20" open="1105.08" close="1109.84" volume="1072250000"

MACD="-1.8351"/>

<date="2004-08-23" open="1115.93" close="1114.24" volume="1047230000"

MACD="0.1509"/>

<date="2004-08-24" open="1116.74" close="1116.60" volume="1065260000"

MACD="1.5825"/>

...

</stock>

We begin with an XML document that represents a portion of quotations about
MACD in stock market, which is shown above. The XML elements include their at-

8 Liu Q., Lu X., Ren F., Kuroiwa Sh.

tributes with their respective values within the element’s start tag. Because the ESF
pattern’s attribute has the same name-value form, it can map the corresponding XML
element’s attribute with value. Therefore, all XML elements can be considered as the
ESF patterns.

Function and relation generation using XSLT:

Here the centric problems are how to build the XSLT stylesheet for realizing ESF
functions and relations, then how to process XML documents including ESF patterns
by the XSLT stylesheet. In this paper we utilize XSLT templates to do this work. In
Code 2, 3 and 4, we write some templates for realizing the ESF functions and relations
of the MACD transform case (shown in Figure 3), and process the XML document
mentioned above by any XSLT processor.

The XSLT templates are always written in one XSLT file together. We separate it
into three pieces in Code 2, 3 and 4 as their corresponding ESF roles for understanding
easily. Code 2, 3 and 4 respectively show source functions set, relations set, and target
functions set. The process of ESF is from ”searching suitable entry in source functions
set, to ”exploring nearest bridge” in relation set, then to ”obtaining last pattern by
recursion” in target function set. For this example we describe detailed technological
process as following:

1 Source patterns extraction in Code 2 – (Searching suitable entry)

Code 2 – ESF source function

<xsl:template name="fs1" match="MACD">

<xsl:variable name="ps1"/>

<xsl:value-of select="//ps1@value"/>

</xsl:variable>

<xsl:variable name="ps2">

<xsl:value-of select="//ps2@value"/>

</xsl:variable>

<xsl:choose>

<xsl:when test="$ps1 <= 0 and $ps2 > 0">

<xsl:value-of select="1"/>

</xsl:when>

<xsl:otherwise>

<xsl:value-of select="0"/>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

Put two patterns ps1, ps2 into source function
fs1 (ps1, ps2) = (ps1 ≤ 0, ps2 > 0), and quote the function value as new pattern ps3.
The obtained patterns ps3 are regarded as source patterns.

2 Transformation from source patterns to target patterns in Code 3 – (Exploring
nearest bridge)

Transform source pattern ps3 into target pattern pt10 through relation r1(ps3) =
pt10. In the transformation, the target patterns pt10, is needed.

XML based Extended Super-function Schema in Knowledge Representation 9

Code 3 – ESF relation

<xsl:template name="r1">

<xsl:variable name="macd">

<xsl:value-of select="//ps3@value"/>

</xsl:variable>

<xsl:choose>

<xsl:when test="$macd = 1">

</xsl:call-template name="fs5">

</xsl:when>

</xsl:choose>

</xsl:template>

3 Target patterns extraction in Code 4 – (Obtaining last pattern by recursion)

Code 4 – ESF target functions

<xsl:template name="ft3">

<xsl:choose>

<xsl:when test="//pt3@subject = //pt6@subject">

<xsl:call-template name="search-and-replace"/>

<xsl:with-param name=" input " select="//pt6@sentence"/>

<xsl:with-param name="search-string" select="//pt6@subject"/>

<xsl:with-param name="replace-string" select="it"/>

</xsl:call-template >

</xsl:when>

<xsl:otherwise>

<xsl:value-of select="//pt6@sentence"/>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

<xsl:template name="ft4">

<xsl:value-of select="//pt3@sentence"/>

<xsl:text>, and </xsl:text>

<xsl:value-of select="//pt7@sentence"/>

</xsl:template>

<xsl:template name="ft5">

<xsl:text>After </xsl:text>

<xsl:value-of select="//pt9@sentence"/>

<xsl:text>, </xsl:text>

<xsl:value-of select="//pt8@sentence"/>

</xsl:template>

Put pattern pt3, pt6 into target function ft3 (pt3, pt6) = Referring(pt3, pt6), and
quote the function value as new pattern pt7.

Then put pattern pt3, pt7 into target function
ft4 (pt3, pt7) = Aggregation(pt3, pt7), and quote the function value as new pattern
pt8.

10 Liu Q., Lu X., Ren F., Kuroiwa Sh.

Then put pattern pt8, pt9 into target function
ft5 (pt8, pt9) = (After pt9, pt8), and quote the function value as new pattern pt10.
The obtained patterns pt10 is regarded as target patterns.

These XSLT codes mentioned above are just a portion of all. If the XML document
constructed as Code 1, then all of XSLT codes are implemented, the result text can be
obtained as shown in follows:

Result

"In Tokyo Stock Exchange market, the Tokyo Stock Exchange Prices Index

(TOPIX) is analyzed now. ...

It opened at 1105.08, and closed at 1109.84 on 2004-08-20. Its total

turnover was 1072250000. It opened at 1115.93, and closed at 1114.24 on

2004-08-23. Its total turnover was 1047230000. After positive divergence

and bullish moving average crossover of MACD, the stock is oversold,

and it is considered bullish signal. It opened at 1116.74, and closed at

1116.60 on 2004-08-24. Its total turnover was 1065260000. ..."

4 Discussion and Conclusion

Our hypotheses are that texts which contain technical indicators as described above
will help non-experts to retain more information and perform better than charts, and
that non-experts will rate these texts as more interesting and pleasant to read. For
this point, the evaluation experiment is carried out in which learning outcomes of texts
will compare with charts’. The MACD indicator is chosen for the evaluation. For each
indicator two evaluation suites are prepared. The only difference between them is that
one uses the texts of technical indicators and the other uses the charts.

The tested are 40 students who do not have expert knowledge of stock market.
They are separated into two equally sized groups. Group A read the charts where the
technical indicators are marked and group B read the analysis texts which our KR
system generates. After reading, two groups will finish the evaluation suite including
”comprehension”, ”accuracy”, ”time”, ”interest”, ”remembrance”, and ”usefulness”
items. The evaluation results are shown in Figure. Obviously, the ”comprehension”,
”interest”, ”remembrance” items’ scores of group B are much higher than group A.
Because the tested think not only charts but also texts are necessary for the technical
indicators to be described, the ”usefulness” item’s score between group A and group
B is about same. Otherwise, the ”accuracy”, ”time” items’ scores of group B approach
group A. The reason is that the ESF schema has linguistic completeness and the
computer’s speed is much faster than before. The ESF based KR system can generate
sufficiently quality analysis texts for non-experts.

In the traditional view, KR can be separated into two kinds: Template based KR and
standard KR. Template based KR system maps its non-linguistic input directly (i.e.,
without intermediate representations) to the linguistic surface structure. Crucially, this
linguistic structure may contain gaps. Well-formed output can be obtained when the
gaps of linguistic structure are filled until the linguistic structure does not contain gaps.
By contrast, standard KR systems use a less direct mapping between input and surface

XML based Extended Super-function Schema in Knowledge Representation 11

MACD indicator

co
m

pre
he

ns
io

n

ac
cu

ra
cy

tim
e

in
te
re

st

re
m

em
bra

nc
e

us
ef

ul
ne

ss

charts

texts

20

15

10

5

0

Fig. 4. evaluation experiment

form. Such systems could begin with inputting semantic representation, subjecting it
to a number of consecutive transformations until a surface structure results.

Within this paper, the ESF based KR system can do the accurate and convenient
transformation between all kinds of knowledge objects. Because not only the ESF
schema combines standard KR with templates, but also it tends to use syntactically
structured ”templates” – function (here the function has more changes than the com-
mon template), and allows the gaps as function’s parameters to be filled recursively for
realizing linguistic expression like standard KR system. Therefore, we name our KR
system – function based KR system.

Furthermore, we utilize the XML and XSTL techniques to describe the ESF schema
in this paper. Because the XML and XSTL have become the main techniques of infor-
mation formalizing on Web, they supply the common rules for developers to format all
information under one standard. Therefore, this schema using XML and XSTL tech-
niques can be realized on Web for information’s integration, distribution and transfor-
mation.

References

[1] V. Mittal, J. Moore, G. Carenini and S.F. Roth, Describing Complex Charts in
Natural Language: A Caption Generation System Computational Linguistics (1998,
24(3), pp. 431-467).

[2] M. Theune, E. Klabbers, J. Pijper, E. Krahmer and J. Odijk, From data to speech:
a general approach, Natural Language Engineering (2001, 7(1), pp. 47-86).

[3] Susan W. McRoy, S. Channarukul and Syed S. Ali, An augmented template-based
approach to text realization, Natural Language Engineering (2003, 9(4), pp. 381-
420).

[4] M. White, Reining in CCG Chart Realization, in Proceedings of the 3rd Interna-

tional Conference on Natural Language Generation (2004).
[5] Mary E. Foster and M. White, Assessing the Impact of Adaptive Generation in the

COMIC Multimodal Dialogue System. in Proceedings of the Workshop on Knowl-

edge and Reasoning in Practical Dialogue Systems (2005).

12 Liu Q., Lu X., Ren F., Kuroiwa Sh.

The Description Logic of Tasks1

Zhang Hui Li Sikun

College of Computer Science,
National University of Defense Technology,

Changsha, China
qd_zhanghui@163.com

Abstract. The logic of tasks can be used in AI as an alternative logic of
planning and action, its main appeal is that it is immune to the frame problem
and the knowledge preconditions problem other plan logics confront. A
drawback the present logic of tasks has is that it is nondecidable (semidecidable
only). This paper extends the logic of tasks to enable the task description by
adapting description structure into it. A formal system DTL, which is sound,
complete and decidable, for agent abilities specification and accomplishablity
of tasks judgment is proposed.

1 Introduction

The semantic used in the logic of tasks can claim to be a formalization of the resource
philosophy associated with linear logic[4,5,6], if resources are understood as agents
carrying out tasks. The formalism may also have a potential to be used in AI as an
alternative logic of planning and action and its main appeal is that it is immune to the
frame problem and the knowledge preconditions problem other plan logics confront
[2,10]. A drawback the present logic of tasks has is that it is nondecidable
(semidecidable only).

Motivated by the success of description logic[7.8.9], in this paper we present a
decidable logic system, the description logic of tasks that enable task description by
adapting the description structure into the logic of tasks. In our paper the task may
have parameter e.g. we can use C(x) denoting the task to clean x, x can be either room
or lawn (room and lawn are constant). The expression α→β in our paper means that
the accomplishment of task α is the condition to accomplish the task β, such as
F(rake)→C(lawn) and F(mop)→C(room) express that the cleaner can clean the room
if be given a mop and can clean the lawn if be given a rake respectively.

A characteristic feature of description languages is their ability to represent other
kinds of relationships, expressed by role, beyond IS-A relationships. The role has
what is called a “value restriction,” denoted by the label ∀R. which expresses a
limitation on the range of types of objects that can fill that role. In this paper we use
role to express the relation between objects. For example R(room,mop) means that

1 Supported by the National Grand Fundamental Research 973 Program (2002CB312105) and

863 program (2004AA115130) of China.

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 13-22

there is certain relation between room and mop (a mop is the necessity tool to clean a
room). The role has what is called “value restriction” denoted by the label ∀R. too,
which also expresses the limitation on the range of object that can fill the role. For
example, the expression ∀R(room,y).F(y)→C(room) means that if be given all
necessity tools for cleaning a room the cleaner can accomplish the task of cleaning it.

In addition, we use predict to express the limitation on the range of value of the
parameter of tasks. For example, if we used predict P to express whether the object is
in charged of by the cleaner or not, then ∀P(x).(∀R(x,y).F(y)→C(x)) expresses that
for every object x that the cleaner in charge of, if be given all necessity tools the
cleaner can accomplish the task of cleaning x.

In remain of the paper we will give out the syntax and the semantic of the
description logic of tasks.

2 Syntax and Semantic of the Description Logic of

Tasks

2.1. Syntax

We fix a set of expressions that we call atom task names {A,A1,A2…}, with each of
which is associated a natural number called its arity, a set of predict name{P,P1,
P2,…}, with each of which also is associated a natural number called its arity, a set of
role names { R,R1,R2,…}.

We also fix an infinite set C ={c0, c1, …} of constants and an infinite set X ={x0, x1,
x2, …} of variables. We refer to elements of C∪X as terms.

Definition 2.1 (domain knowledge axioms) Domain knowledge axioms are defined
as follows:
1. Let a, b be two constants and R a role name, then R(a,b) is a domain knowledge

axiom;
2. Let c1 ,c2, …, cn be constants and P an n-ary predict then P(c1,c2,…,cn) is a domain

knowledge axiom.
Definition2.2 (task formula) Task formulas are elements of the smallest class of

expressions such that:
1. If A is a n-ary atom task name, t1,t2,…,tn are terms, then A(t1,t2,…,tn) is task

formula, be called an atomic task;
2. if P is a n-ary predict, α is a formula, t1,t2,…,tn are terms, then ∀P(t1,t2,…,tn).α and

∃P(t1,t2,…,tn). α are both task formulas;
3. If α is a formula, R is an role, t is a term and y is a variable, then ∀R(t,y).α and

∃R(t,y).α are both task formulas;
4. if α and β are task formulas, then so are α∧β,α∨β and α→β;
5. if α and β are task formulas, then so is αПβ;
6. if α is a formula, x is a variable, then Пxα is a task formula.

14 Hui Z., Sikun L.

П and П are called additive operators, or additives. The additive complexity of a
formula is the number of occurrences of additives in that formula. The task formula
whose complexity is zero is called primitive task formula and task formula that does
not contain free variable is call to be closed.

Except the sets mentioned above, the description logic of tasks also have two other
sets, the domain knowledge and the capability specification, defined as follows:

Definition 2.3 (domain knowledge and capability specification) The Domain
knowledge is a finite set of domain knowledge axioms. The capability specification is
a finite set of primitive task formulas.

2.2 Semantic

Let t1,t2,…,tn be terms, an assignment of (t1,t2,…,tn) is a n-tuple (c1/t1,c2/t2,…,cn/tn)
such that ci∈C and if ti is constant then ci=ti for all i(1≤i≤n). Let α be a primitive task
formula, α(t1/c1,t2/c2,…, tn/cn) is the result of replacing all free occurrences of ti in α
by ci respectively (i=1,2,…,n) if ti is a variable.

We consider interpretation I that consist of a non-empty set ∆I (the domain of the
interpretation) and an interpretation function ⋅ I, which assigns to every predict P a set
PI⊆ (∆I)n, to every role R a binary relation RI ⊆ ∆I× ∆I, to every closed atomic task an
element of {0,1}. To give out the value of all closed primitive task formulas, ⋅ I is
extended as follows:

1. (¬α)I=

 =

else1
1 if0 Iα ;

2. ∀P(t1,t2,…,tn).α=

 ∈=α

else0
 P),...,,(such that)/,...,/,/(assignmentevery for 1))/,...,/,/((if1 I

212211
I

2211 nnnnn cccctctctctctct ;

3. ∃P(t1,t2,…,tn).α=

 =α∈

else0
 1))/,...,/,/((and P),...,,(such that) /,...,/,/(assignmentan is thereif1 I

2211
I

212211 nnnnn ctctctcccctctct ;

4. (∀R(a,y).α)I =

 ∈=α

else0
R)(such that every for 1))/((if1 II a,bbby ;

5. (∃R(a,y).α)I =

 =α∈

else0
1))(y/(and R)(such that constant aexist thereif1 II ba,bb ;

6. (α∧β)I=

 =β=α

else0
1 and 1 if1 II

;

7. (α∨β)I=

 =β=α

else0
1or 1 if1 II

;

8. (α→β)I=

 =β=α

 else1
0 and 1 if0 II

;

The Description Logic of Task 15

We say an interpretation I is coincident with the domain knowledge if it satisfies
conditions follows:
1. For every n-tuple of constants (c1,c2,…,cn), (c1,c2,…,cn)∈PI if and only if

P(c1,c2,…,cn) is in the domain knowledge;
2. for every 2-tuple of constants (a,b), (a,b) ∈RI if and only if R(a,b) is in the domain

knowledge.
Let Γ be a set of primitive task formulas, {x1,x2,…,xn} be the set of all free variable

that occur in the task formulas in Γ. An interpretation I and an assignment
(x1/c1,x2/c2,…,xn/cn) is said satisfy Γ if (α(x1/c1,x2/c2,…,xn/cn))I=1 for every formula α
in Γ. A task formula set Γ is said be not satisfiable if there is no interpretation I and
assignment (x1/c1,x2/c2,…,xn/cn) satisfy it, else be satisfiable.

In remain of the paper we only consider the interpretation that is coincident with
the domain knowledge and assumes that the ability specification is satisfiable.

Definition 2.5(accomplishability of primitive tasks) Let Γ be the ability
specification and α a primitive task. Let {x1,x2,…,xn} be the set of all free variables
that appear in the task formula in the set Γ∪{α}. We say that α is accomplishable if
for every interpretation I and every assignment (x1/c1,x2/c2,…,xn/cn) of (x1,x2,…,xn)
that satisfy Γ, we have (α(x1/c1,x2/c2,…,xn/cn))I=1.

Now we will give out the concept of accomplishable task. The concepts of strategy
and realization used are same as those in [2].

Observe that development preserves the basic structure of the formula. I.e.
1. assume α0=∀P(t1,t2,…,tn).β (or α0=∃P(t1,t2,…,tn).β), then for every realization

R=<α0,α1,α2,…,αm> of α0, αi must has the form of ∀P(t1,t2,…,tn).βi (or
∃P(t1,t2,…,tn).βi)) (1≤i≤n). For every assignment (t1/c1, t2/c2,…,tn/cn) the sequence
of βi(t1/c1, t2/c2,…,tn/cn), denoted by [P: t1/c1, t2/c2,…,tn/cn] R, is an realization of
β(t1/c1, t2/c2,…,tn/cn).

2. Assume α0=∀R(t,y).β (or α0=∃R(t,y).β), then for every realization
R=<α0,α1,α2,…,αm> of α0, αi must has the form of ∀R(t,y).βi (or ∃R(t,y).βi)
(1≤i≤n) and for every constant b the sequence of βi(y/b), denoted by [R:y/b]R , is
an realization of β(y/b).

3. Assume α0=β∧γ(or α0=β∨γ), then for every realization R =<α0,α1,α2,…,αm> of α0,
αi can be expressed as βi ∧γ i (or βi∨γ i) (1≤i≤n) such that <β0,β1,β2,…,βm> and
<γ0,γ1,γ2,…,γm>, denoted by p(R) and r(R), are realizations of β and γ respectively.

4. Assume α0=β→γ, then for every realization R =<α0,α1,α2,…,αm> of α0, αi must
has the form of βi →γi (1≤i≤n) . <β0,β1,β2,…,βm> and <γ0,γ1,γ2,…,γm> denoted by
a(R) and c(R), are realizations of β and γ respectively.
Definition 2.6 We say that an realization R=<α0, α1, α2,…, αm> of a task formula

α0 is successful if one of the following conditions holds:
1. If α0 is an atomic task formula, or α0=¬α and α is an atomic task formula(both

imply m=0), and α0 is accomplishable;
2. α0=∀P(t1,t2,…,tn).β and [P: t1/c1, t2/c2,…,tn/cn] R is successful for every assignment

(t1/c1,t2/c2,…,tn/cn) such that P(c1,c2,…,cn).
3. α0=∃P(t1,t2,…,tn).β and there is an assignment (t1/c1,t2/c2,…,tn/cn) such that

P(c1,c2,…,cn) and [P:t1/c1,t2/c2,…,tn/cn] R is successful;

16 Hui Z., Sikun L.

4. α0=∀R(t,y).β and [R:y/b] R is successful for every constant b such that R(t,b);
5. α0=∃R(t,y).β and there is a constant b such that R(t,b) and [R:y/b] R is successful ;
6. α0=β∧γ and p(R) and r(R) both are successful;
7. α0=β∨γ and either p(R) or r(R) is successful;
8. α0=β→γ and c(R) if successful if a(R) is successful.
9. α0 is an additive formula and either m=0 or m≥1 and <α1, α2,…, αm> is successful.

Definition 2.7 (accomplishability of tasks) Let α be a task formula. If there is an
action strategy f such that every realization of α with f is successful then we say that α
is accomplishable.

3 Accomplishablity judgment of primitive tasks

In this section the method for accomplishablity judgment of primitive tasks is
presented. The work in this section is inspired and highly related to F. Baader and
P. Hanschke’s work for the consistent judgment of description logic formula set [9].

 For a task formula α, it is accomplishable if and only if that Γ∪{¬α} is not
satisfiable. So here we need only give out the method for satisfiability judgment of
finite set of primitive task formulas.

First, we assume that the task formula in the task formula set, denoted by S1, does
not has R(1) type free variable. A variable of task formula α is said to be R(1) type if
x is a free variable and α has sub formula has the form ∀R(x,y).β or ∃R(x,y).β. In fact
if there is a R(1) type free variables x in S1 , the number of constant a with a constant
b such that R(a,b) is in domain knowledge is finite, assume {a1,a2,…,an} is the set of
all such a, then S1 is satisfiable if and only if at least one of the sets S1(x/ai) is
satisfiable.

Furthermore, we assume that every formula in S1 is in negation normal form, i.e. ¬
occurs only immediately before the atom task name, in fact if a task formula in S1 is
not in negation normal form it can be transformed in to an equivalent one.

Definition 3.1(transformation rules) Let M be a finite set of finite primitive task
formula sets. The following rule will replace one of elements S of M by another set
(or several other sets) of primitive task formulas.

Rule 1: If α(c1/t1,c2/t2,…,cn/tn)∈S for every assignment (c1/t1,c2/t2,…,cn/tn) such
that P(c1,c2,…,cn), ∀P(t1,t2,…,tn).α is a sub formula of one element of S and
∀P(t1,t2,…,tn). α is not in S, then replace S by S′=S∪{∀P(t1,t2,…,tn). α};

Rule 1′: if P(c1,c2,…,cn), ∀P(t1,t2,…,tn).α∈ S and α(c1/t1,c2/t2,…,cn/tn) is not in S,
then replace S by S′=S∪{α(c1/t1,c2/t2,…,cn/tn)};

Rule 2: if there is an assignment (c1/t1,c2/t2,…,cn/tn) of (t1,t2,…,tn) such that
P(c1,c2,…,cn) and α(c1/t1,c2/t2,…,cn/tn) ∈ S, ∃P(t1,t2,…,tn).α is a sub formula of one
element of S but ∃P(t1,t2,…,tn). α is not in S, then replace S by S′=S∪{∃P(t1,t2,…,tn).
α}

Rule 2′: if ∃P(t1,t2,…,tn).α ∈ S, but there is no assignments (c1/t1,c2/t2,…,cn/tn) such
that P(c1,c2,…,cn) and α(c1/t1,c2/t2,…,cn/tn) ∈ S, then replace S by sets S∪

The Description Logic of Task 17

{α(c1/t1,c2/t2,…,cn/tn)} where (c1/t1,c2/t2,…,cn/tn) are all assignments of (t1,t2,…,tn)
such that P(c1,c2,…,cn);

Rule 3: if α(y/b)∈ S for every constant b such that R(a,b), ∀R(a,y).α is a sub
formula of one element of S and ∀R(a,y). α does not in S, then replace S by S′=S∪
{∀R(a,y).α };

Rule 3′: if ∀R(a,y).α ∈ S, but there is a constant b such that R(a,b) and α(y/b) is
not in S, then replace S by S′=S∪{α(y/b)};

Rule 4: if there is a constant b such that R(a,b) and α(y/b)∈ S, ∃R(a,y).α is a sub
formula of one element of S but ∃R(a,y).α is not in S, then replace S by S′=S∪
{ ∃R(a,y).α};

Rule 4′: if ∃R(a,y).α ∈ S, but there is not a constant b such that R(a,b) and
α(y/b)∈ S, assume the set of all constant b such that R(a,b) is {b1,b2,…,bn}, then
replace S by n sets Si= S∪{α(y/bi)}(i=1,2,…,n);

Rule 5: if α∈ S and β∈ S, α∧β is an sub formula of one element of S, but α∧β is
not in S, then replace S by S′=S∪{α∧β};

Rule 5′: if α∧β∈ S but α and β are not both in S, then replace S by S′=S∪{ α,β};
Rule 6:if α∈ S or β∈ S, α∨β is an sub formula of one element of S and α∨β is not

in S, then replace S by S′=S∪{α∨β};
Rule 6′: if α∨β∈ S but none of the α and β is in S, then replace S by S′=S∪{α}

and S″=S∪{β};
Rule 7: ifα→β∈ S and α∈ S but β in not in S, then replace S by S′=S∪{β};
Definition 3.2 (clash) We say that a primitive formula set S has a clash if α and

¬α are both in S for certain task formula α.
To test whether a finite set of primitive task formulas S1 is satisfiable or not, we set

M1={S1} and apply the transformation rule in the definition 3.3 to M as long as
possible then we finally end up with a complete Set Mr i.e. a set to which no rule are
applicable. The initial set S1 is satisfiable if and only if there is a set in Mr does not
contain a clash (see the follow part of this section for a proof). The test procedure can
be defined in pseudo programming language as follows:

Algorithm 3.1 (satisfiability judgment) The following procedure takes a finite set
of primitive formulas as an argument and checks whether it is satisfiable or not.

Define procedure check-satisfiable(S1)
 r:=1;
 M1:={S1}
 While ‘a transformation rule is applicable to Mr’

do
 r:=r+1
 Mr:=apply-a-transformation rule(Mr-1)
 od
 if ‘there is an S ∈ Mr that does not contain a clash’

then return YES;
else return NO.

For example, let {P(room), R(room, mop)} be the domain knowledge. P(room)
means that the cleaner is in charge of the room. R(room, mop) means that mop is the
necessary tool to clean the room. If the ability specification is

18 Hui Z., Sikun L.

{∀P(x).(∀R(x,y).F(y)→C(x)), F(mop)}, where ∀P(x).(∀R(x,y).F(y)→C(x)) means that
for every object x that the cleaner is in charge of, if be given all necessity tools the
cleaner can accomplish the task of cleaning it. F(mop) means that the keeper can give
the cleaner a mop. To judge whether C(room) is accomplishable or not, i.e. whether
the cleaner can clean the room or not, we need to judge whether the set
S1={∀P(x).(∀R(x,y).F(y)→C(x)), F(mop),¬C(room)} is satisfiable or not. The set Mi
generated in the testing process are:
M1={{∀P(x).(∀R(x,y).F(y)→C(x)), F(mop), ¬ C(room)}};
M2={{∀P(x).(∀R(x,y).F(y)→C(x)), F(mop), ¬C(room),∀R(room,y).F(y)→C(room)}}
(by Rule 1 , ∀P(x).(∀R(x,y).F(y)→C(x))and P(room));
M3={{∀P(x).(∀R(x,y)F(y)→C(x)), F(mop), ¬C(room)}, ∀R(room,y).F(y)→C(room),
∀R (room,y).F(y) }
(by Rule 3 , R(room, mop) and F(mop));
M4={{∀P(x).(∀R(x,y).F(y)→C(x)), F(mop), ¬C(room)}, ∀R(room,y).F(y)→C(room),
∀R(room,y).F(y), C(room)}}
 (by Rule 7, ∀R(room,y).F(y)→C(room) and ∀R(room,y).F(y)).

Then S1 is not satisfiable because there is not a set in M4 that does not contain a
clash. So we know that C(room) is accomplishable.

For a primitive task formula β the length of β, denoted by |β|, is inductively
defined as:
1. If β is an atomic task formula or β=¬α and α is an atomic task formula, then |β|

=1;
2. if β=∀P(t1,t2,…,tn).α or β=∃P(t1,t2,…,tn).α then |β|=|α|+1;
3. if β=∀R(t,y).α or β=∃ R(t,y).α, then |β|=|α|+1;
4. if β=α∧γ or β=α∨γ, then |β|=|α|+|γ |;
5. if β=α→γ, then |β|=|α|+|γ |.

We call a task formula α that has the form α=β∧γ is a ∧-task. The maximal ∧-
expression of a ∧-task is an express α1∧α2…∧αn such that αi is no long a ∧-task for
every i(1≤i≤n). If α is a ∧-task and its maximal ∧-expression is α1∧α2…∧αn, then the
∧-length of α is n. The concept of ∨-task and the ∨-length of a ∨-task, the concept of
→-task and the →-length of a →-task all can be defined analogously.

Proposition 3.1 The algorithm 3.1 can always compute a complete set Mr in finite
time and the initial set S1 is not satisfiable if and only all set in Mr contain a clash.

Proof: Because the number of different assignments (c1/t1,c2/t2,…,cn/tn) of
(x1,x2,…,xn) such that P(c1,c2,…,cn) for every predict P that occurs in domain
knowledge, the number of different sub formulas that has the form ∀P(t1,t2,…,tn).α of
elements of S1, the number of different sub formulas that has the form
∃P(t1,t2,…,tn).α of elements of S1, the number of different constant b which satisfies
R(a,b) for each pair (a,R) of constant and role that occurs in S1, the number of the sub
formulas that has the form ∀R(t,y).α of elements of S1, the number the sub formulas
that has the form ∃R(t,y).α of elements of S1, the number of the different sub formulas
that has the form of α∧β of elements of S1 and the maximal ∧-length of them, the
number of different sub formula that has the form α∨β of elements of S1 and the
maximal ∨-length of them, the number of the different formula that has the form
α→β of the elements of S1 and the maximal →-length of them are all finite, then it

The Description Logic of Task 19

can be proved that the rules in definition 3.1 can only be applied for finite times, so
the computation process will terminate in finite time.

The second part of the proposition is a consequence of lemma 3.1 and lemma 3.2
bellows, where the notion of contradictory formula set which is syntactic equivalent
of not satisfiable formula set is defined by induction on the relation of “descendant ”.
A formula set S occurring in the computation is contradictory with respect to the
computation if and only if
1. S does not have a descendant and contains a clash or
2. all descendants of S are contradictory.

Lemma 3.1 If the initial formula set is contradictory with respect to a given
computation then it is not satisfiable.

Proof: The proof is by induction on the definition of contradictory with a case
analysis according to the transformation rule applied. Assume S1 is a given set of
formulas which is contradictory with respect to a given computation, we will show
that it is not satisfiable.

If S1 does not have a descendant, then it must have a clash. Obviously a set of
formulas that have a clash is not satisfiable. For the induction step, assume S is
satiafiable, we have to show that the descendant (resp. one of the descendant in the
case of rule 2′, rule 4′, and rule 6′) of S is satisfiable too, this will be contradiction to
the induction hypothesis, because all descendants of contradictory set are
contradictory.

We shall only demonstrate the case of rule 5. The other cases can be treated
similarly. Assume that rule 5 is applied to a set, denoted by Sr-1, means that there are
two formula α and β such that α∈ Sr-1 and β∈ Sr-1 and the descendant of Sr-1, denoted
by Sr, is equal to Sr-1 ∪ {α∧β}. If the interpretation I and the assignment
(x1/c1,x2/c2…,xn/cn) satisfy Sr-1, then we have (α(x1/c1,x2/c2…,xn/cn))I=1 and
(β(x1/c1,x2/c2…,xn/cn))I=1, thus ((α∧β)(x1/c1,x2/c2…,xn/cn))I=1 by the definition of the
semantic of closed task formulas, so I and (x1/c1,x2/c2…,xn/cn) satisfy Sr too.

Lemma 3.2 If the initial formula set is not contradictory with respect to a given
computation then it is satisfiable.

Proof: If S1 is not contradictory then there is a primitive formula set S⊇ S1 in the
complete set Mr such that there is no clash in S. Assume the set of all different free
variable occur in S is {x1,x2,…,xm}, we define an interpretation I=(∆I,⋅I) as follows:
∆I is the set of all constants. ⋅I assigns to each constant itself, to each predict P a set

PI={(a1, a2, … , a n)|ai∈∆I (1≤i≤n) and P(a 1, a2,…, a n)}, to each role R a set
RI={(a,b)| a,b∈∆I and R(a,b)}. Let (c1,c2,…,cm) be an arbitrary m-tuple of constants,
⋅I assigns each atomic task A(a1,a2,…,aj)(j=1,2,3,…) an element of {0,1} according
to following rule:

A(a1,a2,…,aj)I=

 ∈¬

else1
)/,...,/,/(),...,,(A if0 221121 mmj cxcxcxSaaa

We will prove that the interpretation I and the assignment (c1/t1,c2/t2,…,cm/tm)
satisfy S, so satisfy S1 also. We use induction on the length of α.

If |α|=1, then α is an atomic task or α=¬β and β is an atomic task. Then
(α(x1/c1,x2/c2…,xm/cm))I=1 by the definition of I.

20 Hui Z., Sikun L.

Assume |α|=k (k>1), we prove that (α(x1/c1,x2/c2…,xm/cm))I=1. In the case of
α=∀P(t1,t2,…,tn).β. Mr is complete then we have β(t1/a1,t2/a2,…,tn/an)∈S for every
assignment (t1/a1,t2/a2,…,tn/an) such that P(a1,a2,…,an), so
(β(t1/a1,t2/a2,…,tn/an)(x1/c1,x2/c2…,xm/cm))I=1 by the induction hypothesis, so we have
(α(x1/c1,x2/c2…,xm/cm))I=1. The other cases can be proved analogously.

4 Logic DTL

The logic DTL (Description Logic of Tasks) that we are going to define in this section
is intended to axiomatize the set of accomplishable task formulas. It will be
mentioned that the concept of quasiaction and quasireaction of a task formula is same
as those in [2].

Definition 4.1 (DTL). The axioms of DTL are all the primitive formulas that are
accomplishable.

The rules of inference are
A-rule:

α
π , where π is an elementary quasiaction for α.

R-rule：

α
πππα e21 ,,,, , where e≥1 and e21 ,,, πππ are all quasireaction for α, α is

the primitivization of α.
Theorem 4.1(soundness) Let α be a task formula, if DTL ├ α then α is

accomplishable.
Theorem 4.2 (completeness) Let α be a task formula, if α is accomplishable, then

DTL├α.
The only different between the logic DTL and the logic L proposed in [2] is the

different of their axioms. Axioms of DTL are primitive task formulas that are
accomplishable while the axioms of L are formulas provable in classical first order
logic. The rules of inference in them are same. Keep in mind that the concept of
strategy, quasiaction and quasireaction used in this paper are same to those in [2]. So,
the proof of the soundness, completeness of DTL can be carried out analogically as
the proof of the corresponding properties of the logic L.

Theorem 4.3 (decidability) DTL is decidable.
 Proof: Here is an informal description of a decision procedure for DTL├α,

together with a proof, by induction on the additive complexity ofα, that the procedure
takes a finite time. Given a formula α

(a) If α is primitive, then we can judge whether it is an axiom, i.e. whether it is
accomplishable using algorithm 3.1 in finite time by Proposition 3.1.

(b) If α is not primitive, then the only way it can be proved in DTL is if either one
of the elementary quasiactions for it is provable, or all of the elementary
quasireactions for it, together with its primitivization, are provable in DTL. Whether
the primitivization is provable can be checked in a finite time. Also, as we noted, the

The Description Logic of Task 21

number all the elementary quasiactions and quasireactions for α is finite. So, check
each of them for provability in DTL. If it turns out that either one of the elementary
quasiactions, or all of the elementary quasireactions together with the primitivization
of α are provable in DTL, then output “yes”, otherwise output “no”. The additive
complexities of those elementary quasiactions and quasireactions are lower than the
additive complexity of α and, by the induction hypothesis, their provability in DTL
can be checked in a finite time. So that this step, too, can be completed in a finite time.

5 Conclusion

The description logic of tasks enable tasks description and have more reasoning
power, it can be used to structure the cooperation plan system for multi agent system.
For example, for behavior modeling of large-scale battlefield simulation, we use it to
describe the ability knowledge of military entities and the relations among them, then
we can use the reasoning power of it for cooperation actions plan and verification.

 References

1. V.Dignum, J.J. Meyer, F. Dignum, H. Weigand. Formal Specification of
Interaction in Agent Societies. In: M. Hinchey, J. Rash, W. Truszkowski, C. Rouff,
D. Gordon-Spears (Eds.): Formal Approaches to Agent-Based Systems (FAABS),
Lecture Notes in Artificial Intelligence, Springer-Verlag, Volume 2699/2003.

2. Giorgi Japaridze, The logic of tasks, Annals of Pure and Applied Logic 117 (2002).
3. Peep Küngas Analysing AI Planning Problems in Linear Logic – A Partial

Deduction Approach Lecture Notes in Computer Science Volume 3171/2004.
4. Peep Küngas, Mihhail Matskin Linear Logic, Partial Deduction and Cooperative

Problem Solving Lecture Notes in Computer Science Volume 2990/2004.
5. G.Japaridze, Introduction to computability logic. Annals of Pure and Applied

Logic, vol. 123 (2003).
6. A. Blass, A game semantics for linear logic, Ann. Pure Appl. Logic 56 /1992.
7. F. Baader etc. The Description Logic Handbook: Theory, Implementation and

Applications. Cambridge, Cambridge University Press 2002.
8. F. Baader and U. Sattler. Tableau Algorithms for Description Logics ，Lecture

Notes In Computer Science，Proceedings of the International Conference on
Automated Reasoning with Analytic Tableaux and Related Methods ,2000.

9. F. Baader and P. Hanschke. A Scheme for Integrating Concrete Domains into
Concept Languages. DFKI Research Report RR-91-10, Deutsches
Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, 1991.

10.S. Russel, P. Norwig, Artificial Intelligence: A Modern Approach, Prentice-Hall,
Englewood Cli9s, NJ,1995.

22 Hui Z., Sikun L.

A Logic Programming Formalization for
Circumscription

Masahiko Arai

Dept. of Information and Communication Technology, Tokai University
317 Nishino, Numazu, Shizuoka, 410-0395, Japan

arai@wing.ncc.u-tokai.ac.jp

Abstract. This paper proposes a practical way for circumscription. The
meanings of the practical way are 1) a goal-oriented prover is given for solving
circumscription problems. A feature of the prover is that the priority and the
variable predicates are suggested so as to prove the intended results whereas
usual methods prove queries by giving the priority and the variable predicates
in advance. This prover is an application of the one for DNF formulae in the
object system T and is the set of meta-rules of a meta-predicate which
represents a clause. Circumscription formulae are represented as the meta-
rules. The SLD-resolution procedures for the meta-system are given and a
circumscription problem is solved by showing an empty node in the SLD-tree if
semi-decidable. 2) Based on the prover, formulae satisfying circumscription
formulae are given for predicates with functions. Practically circumscription is
applied to prove the negation of a predicate p. For the formulae given above to
be false, the condition is needed that T made p false is consistent with T. 3)
Variable predicates are generalized so as to prove T made p false. By the
generalization it is shown that circumscription problems are practically solved
by giving a model to show the consistency for the undecidable cases. By
encapsulating the consistency check as an oracle a practical logic programming
for circumscription is given for queries without universal quantifiers. The
oracle for queries with universal quantifiers is also given.

1 Introduction

Nonmonotonic logics are important for inferences based on defeasible assumptions in
AI [1]. Major nonmonotonic logics are circumscription [7], default logic, and
autoepistemic logic. These logics deal with the concepts of plausibility and normality
and the proof systems are complicated. As seen in the sequent calculi for
nonmonotonic logics these proof systems include both the proof and disproof
procedures [3, 5]. Default and autoepistemic logics need the disproof-procedures to
generate the extensions and the expansions, respectively. Regarding the provers
circumscription is attractive from the following two reasons. One is that in
propositional case the complexity of circumscription is Пp

2 of polynomial hierarchy
whereas that of autoepistemic logic is Пp

3-complete for skeptical reasoning [4]. The
other is that circumscription is formalized in classical logic by a formula in second-
order logic, and resolution procedures can be applied to the provers. The proof-

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 23-32

systems of circumscription are usually based on minimal modes, and disproof-
procedures are needed to generate minimal models. In the tableau calculus it is
needed to show that the branches which are not closed are not minimal models by
showing that there are predicates not proved in the branches [8]. For a given theory T
and a query the MILO-resolution needs to generate a tree which shows that T and the
query are consistent, and to prove all the leaves in T [10].
 There are several restrictions in these provers, 1) The selection priority of the
predicates circumscribed and the variable predicates must be given a priori [6]. 2)
There are no procedures for the cases where the predicates include functions, i.e., the
ones undecidable. Originally nonmonotonic systems are required to realize the
concepts of plausibility and normality needed. The priority and the variable
predicates must be chosen such that the requirements are satisfied. Therefore these
vary accordingly to the queries. In this meaning a goal-oriented prover is practically
needed such that both the circumscribed (the priority) and the variable predicates can
be suggested in the processes of proofs. Regarding 2) the circumscription formula
includes at least П0

1 formulas of arithmetical hierarchy, and the system is
undecidable. Therefore semi-decidable provers are impossible. However if the
undecidability is confined it is possible to make provers semi-decidable except the
confined undecidable procedures. This method gives a practical way to solve
problems for circumscription. For example if the undecidability is due to the proof of
the consistency then it can be resolved practically by giving a model though not
formally.
 This paper proposes a goal-oriented prover which solve practically the above two
problems. The proof-system is an application of that for the set of formulae in the
disjunctive normal forms (DNF) [2]. The system is the set of Horn clauses called
meta-rules of a second-order predicate Prov called a meta-predicate which means a
clause. The system is called a meta-system, and is generated from the DNF formulae
in the object system T. SLD-resolution procedures are given for the meta-system, and
the search space is an SLD-tree. The meta-system is sound and complete in the
meaning that if Prov with the empty value is proved in the meta-system then the
object system is inconsistent, and vice versa. Let T be the set of clauses. For a given
predicate p the circumscription formula of p is that α←p is proved from p←α and
T(p/α), where T(p/α) is given by substituting α for p in T. α is called a circumscribing
formula of p. The circumscription formula is a DNF formula, since the body consists
of p←α and T(p/α), where T(p/α) is a conjunction of clauses due to the fact that T is
the set of clauses. Therefore the circumscription formula is a meta-rule in the meta-
system and is called the circumscription meta-rule. Generally (T+circumscription) is
undecidable and so is the meta-system.
 In Sec.2, the proof system is formulated. In Sec.3, based on the prover,
circumscribing formulae are given without variable predicates for the set of typical
clauses of predicates with functions. Practically circumscription is applied to prove
the negation of p. For the formulae given above to be false, the condition must be
satisfied that T made p false is consistent with T. When the condition is satisfied,
variable predicates are generalized so as to prove T made p false and are called
generalized variable-predicates. Generally the consistency check is undecidable. By
encapsulating the consistency check as an oracle, a practical logic programming for
circumscription is given for queries without universal quantifiers, i.e., circumscription

problems are practically solved by giving a model to show the consistency. The
oracle for queries with universal quantifiers is also given.

 2 Formalization

Let (Γ) be a set of formulas of first-order logic. Without loss of generality it is
assumed that predicates are one variable except the special predicate =, the equality.
Assuming Skolem’s functions and the Henkin theory of (Γ), let Γ be the matrix of (Γ)
represented as the set of DNF formulae. In the following each upper case letter, U, W,
X, Y or Z, takes the values of disjunctions, conjunctions of positive predicates, or the
empty symbol □, and each lower case letter except x and y represents a predicate in
the formula the upper case letter denotes. x or y is for the variable of (Γ). X and Y
are the variables of the meta-system called M whose values are the conjunctions and
the disjunctions of the Herbrand base of Γ, respectively. Now introduce a meta-
predicate Prov(X;Y) which means Y←X, where X and Y are a conjunction and a
disjunction of positive predicates, respectively. When Y={Y1,Y2} and X=X1&X2,
Prov(X;Y) is also represented as Prov(X1,X2;Y1,Y2), where & is the conjunction
sign and {} means the disjunction of the elements. The meta-system for to Γ is
defined as follows.

Definition 1 Let Γ be the set of the formulas, (Z←W)←(Z1←W1)&…&(Zm←Wm)
and (Z’←W’)←. The meta-system M is the set of meta-rules as follows.

M0 Prov(X,X1;Y1,Y) ← Prov(X,X1,X1;Y1,Y1,Y),
M1 Prov(X,u;u,Y) ←,
M2 Prov(X;Y) ← Prov(X;u1,Y)&…&Prov(X;uj,Y)&Prov(X,U;Y), U=u1&…&uj,
M3 Prov(X,W;Z,Y) ← Prov(X,W,W1;Z1, Z,Y)&…&Prov(X,W,Wm;Zm, Z,Y),
M4 Prov(X,W’;Z’,Y) ←,

where u, u1,…, and uj are predicates (x is not shown explicitly). The left and the
right formulae of a meta-rule are called the head and the body, respectively. When
the negation of a query is added to Γ, the query is represented as a conjunction in the
normal form and the corresponding meta-rule is M3 with W and Z empty. The body
of a meta-rule without the head is called a goal clause for simplicity. It is noted that
M is a proving system without the negation symbol ~.

Definition 2 (The SLD-tree) The root node is Prov(□; □). Each node is labeled a
conjunction of Prov. Let Prov(X1;Y1) be the left most of the conjunction labeled to a
node. Then the conjunctions below the node are generated as follows. In the
following ‘X1 (Y1) includes W (Z)’ means that every predicate in W (Z) matches
with a predicate in X1 (Y1) with the most general unifier. X-X1 means the formula
removed atoms in X1 from X.

P1: If Prov(X1;Y1) matches with the head of M1or M4 then remove it.
P2: If X1 and Y1 include W and Z in M3, respectively, then remove it and add
 Prov(X1,Wi;Zi,Y1), (1≤i≤m).
P3: If Y1 includes Z in M3 and does not include any ui, (1≤i≤j), where u1&…&uj=

 W-X1, then remove Prov(X1;Y1) and add Prov(X1;ui,Y1), (1≤i≤j), and
Prov(X1,W,Wi;Zi,Y1), (1≤i≤m).

P4: If Y1 includes Z’ in M4 and does not include any ui, (1≤i≤j), where u1&…&uj=
 W’-X1, then remove Prov(X1;Y1) and add Prov(X1;ui,Y1), (1≤i≤j).

 The generated meta-predicates obtained by applying the above procedures
repeatedly are called the descendants of Prov(X1;Y1). It is noted that for P2, P3, or
P4 to be applied to Prov(X1;Y1), Y1 must include Z or Z’. The branch whose leaf is
the empty node is called a success-branch. Theorems 3 and 4 have been proved in [2].

Theorem 3 If there is the empty node in the SLD-tree for M then Γ is inconsistent
and vice versa.

Theorem 4 If the SLD-tree includes the empty node then there is a success-branch
such that any meta-predicate in a node doesn’t appear in the descendants, i.e., there
are no loops such that a meta-predicate is expanded repeatedly.

Example 5 To show the existence of x for p(x) from {p(a),p(b)}, where a and b are
constant. Γ is {p(a),p(b)}← and the negation of the query is ←p(x). Corresponding
meta-rules and the goal clause for Prov(□; □) are, respectively,

Prov(X; p(a),p(b),Y) ←, (1)

Prov(X;Y) ← Prov(X;p(x),Y), (2)

 ← Prov(□; □), (3)

where the other meta-rules, M0, M1, and M2 are omitted (so are hereafter). (2) is the
meta-rule corresponding to the negation of the query in Γ. The SLD-tree is

Prov(□;□) - Prov(□;p(x)) - Prov(□;p(x),p(x’)) - □.

The second is obtained by matching Prov(□;□) with the head of (2) and P2. The third
is given by matching Prov(□;p(x)) with the head of (2) and P2. By Theorem 4, x and
x’ are different. The last is shown by (1) and P1 with x=a and x’=b.

 Let T be the set of clauses. The formulation of circumscription is given in second-
order logic with the universal quantifier. The universal quantifiers in first and
second-order logics satisfy the same inference rules [9] and a circumscription formula
is a DNF formula in T. Therefore the meta-rule for circumscription is in the form of
M3 and is given as follows.

C1 Prov(X,p(x);α(x),Y) ← Prov(X,p(x),α(c);p(c),α(x),Y)&T(p/α,x/c’:X,p(x);α(x),Y),

where c and c’ are constant symbols not appearing in T and T(p/α,x/c’:X,p(x); α(x),Y)
is the conjunction of meta-predicates for clauses in T replaced p and x with α and c’,
respectively. For example when T is the set of q(x)←p(x) and r(x)←s(a),

 T(p/α,x/c’:X,p(x);α(x),Y)≡Prov(X,p(x),α(c’);q(c’),α(x),Y)

& Prov(X,p(x),s(a);r(c’),α(x),Y).

However the second meta-predicate is removed since it is true in M.

The other meta-rules needed for (T+circumscription) relate to the equality (=).

C2 Prov(X,X1(x);Y1(x),Y) ← Prov(X,X1(x),X1(y),x=y;Y1(y),Y1(x),Y)

 &Prov(X,X1(x);x=y,Y1(x),Y),

C3 Prov(X,x=y,x=y’;Y) ← Prov(X,y=y’;Y),

C4 Prov(X;x=x,Y) ←,

where the variables x and y in X1 and Y1 are explicitly shown. C2 is the meta-rule to
show that if a meta-predicate is proved at x=y and for any values not equal to y then
the meta-predicate is proved for any values of x.
 It is noted that α in C1 is a variable in the meta-system. By definition α(x) in the
head of C1 is a disjunction of positive predicates and α(c) in the first meta-predicate
in the body is a conjunction of positive predicates. Moreover α is unified with any
formula. This is understood by regarding α as a positive predicate with the following
auxiliary meta-rules, respectively, corresponding to {α1(x),α2(x)}, α1(x)&α2(x),
{~α1(x),α2(x)}, and ~α1(x)&α2(x) for α(x).

A1 Prov(X, α(x);Y) ← Prov(X,α1(x);Y)&Prov(X, α2(x);Y),

A2 Prov(X;α(x),Y) ← Prov(X;α1(x),Y)&Prov(X;α2(x),Y),

A3 Prov(X;α(x),Y) ← Prov(X,α1(x);α2(x),Y),

A4 Prov(X,α(x);Y) ← Prov(X,α2(x);α1(x),Y).

Definition 6 The meta-system MC for (T+circumscription) is the set of M0, M1, M2,
C1, C2, C3, C4 and the meta-rules of M4 for the clauses in T, and the auxiliary meta-
rules A1, A2, A3, and A4.

3 Practical Logic Programming for Circumscription

Example 7 T is {p(a),p(b)}←. Then p(x)={p(a)&x=a, p(b)&x=b} is proved in MC.
p(x)←{p(a)&x=a, p(b)&x=b} is obvious. {p(a)&x=a, p(b)&x=b}←p(x) is shown as
follows. Meta-rules are with α(x)≡{p(a)&x=a,p(b)&x=b} and a constant d not in MC,

Prov(X;p(a),p(b),Y) ← ,

Prov(X;Y) ← Prov(X,p(d);α(d),Y).

A success-branch is given as follows, with X1≡p(d)&α(c), and Y1≡{p(c),α(d)}. The
root, Prov(□;□), is omitted (so is hereafter).

Prov(p(d);α(d)) - Prov(X1;Y1) - Prov(X1,α(a),c=a;p(a),Y1)&Prov(X1;c=a,Y1) -
- Prov(X1;c=a,Y1) - Prov(p(d),α(c);c=a,c=b,p(c),α(d)) - □.

The second node is given by matching with C1 and is the first meta-predicate in the
body of C1 since T(p/α,x/c’:X,p(x); α(x),Y) is true. The third is given by applying C2
with y=a. By applying A1 to the first meta-predicate Prov(X1,p(a),c=a;p(a),Y1) and
Prov(X1,p(b),c=b,c=a;p(a),Y1) are obtained. Both are true by P1 and by C3 with a=b
false, respectively, and the fourth node is given. Similarly the fifth node is obtained
by applying C2 with y=b. The last is given by A1 and P1.

 It is noted that {x=a,x=b}←p(x) is also proved in Example 7. Then the following
two circumscription meta-rules corresponding to α(x)≡x=a and α(x)≡x=b are used.

Prov(X,p(x);x=a,Y) ← Prov(X,p(x),c=a;p(c),x=a,Y),

Prov(X,p(x);x=b,Y) ← Prov(X,p(x),c'=b;p(c'),x=b,Y).

 Similarly the well-known solution, i.e., for all x and all y {(x=a←p(x)),
(y=b←p(y))}, is also proved in MC by using the above two circumscription meta-
rules with the following meta-rule for the query and constants, d and d’, not in MC.

Prov(X;Y) ← Prov(X,p(d),p(d’);d=a,d’=b,Y).

Example 8 (The priority and variable predicates) With A, S, E, p1, and p2 for
adult, student, employed, abnormal1, and abnormal2, respectively, Let T be
p1(x)←S(x)&E(x), {E(x),p2(x)}←A(x), A(x)←S(x), S(m)← and let the query be
~E(m), where m (Mary) is a constant. The corresponding meta-rules are,
respectively,

Prov(X,S(x),E(x);p1(x),Y) ←, (4)

Prov(X,A(x);E(x),p2(x),Y) ←, (5)

Prov(X,S(x);A(x),Y) ←, (6)

Prov(X;S(m),Y) ←, (7)

Prov(X;Y) ← Prov(X,E(m);Y). (8)

 The circumscription meta-rules for p1 and p2 are, respectively,

Prov(X,p1(x);α1(x),Y)
 ←Prov(X,p1(x),α1(c);p1(c),α1(x),Y)&Prov(X,p1(x),S(c’),E(c’);α1(c’),α1(x),Y), (9)

Prov(X,p2(x);α2(x),Y)
←Prov(X,p2(x),α2(d);p2(d),α2(x),Y)&Prov(X,p2(x),A(d’);E(d’),α2(d’),α2(x),Y).(10)

It is noted that the second meta-predicate in the body of (9) is T(p1/α1,x/c’:X,p1(x);
α1(x),Y) since from (5) to (8) the meta-predicates are not changed and are true.
Therefore these meta-predicates in T(p/α,x/c’:X,p(x); α(x),Y) are dropped. Similarly
(10) is obtained. The first and the second nodes of a success-branch are given by
making α1(x) empty for a value x’ in (9),

Prov(E(m); □) -
- Prov(E(m);p1(x’))&Prov(p1(x’),α1(c);p1(c))&Prov(p1(x’),S(c’),E(c’);α1(c’)) -.

The second node is given by P3. The first meta-predicate of the second node is
expanded into Prov(E(m);S(x’),p1(x’))&Prov(E(m);E(x’),p1(x’)) by matching with
(4) and by applying P4 . From (7) the first meta-predicate is removed with x’=m by
P1, and the second meta-predicate is also removed by P1. Therefore the first meta-
predicate in the second node is removed. The third and the last nodes are

- Prov(p1(m),α1(c);p1(c))&Prov(p1(m),S(c’),E(c’);α1(c’)) - □.

The first meta-predicate in the third node is matched with (4) by unifying x and α1(c)
with c and S(c)&E(c), respectively, and is removed. By using the auxiliary meta-rule
A2, it is shown that the second meta-predicate is also removed by P1 and the empty
node is obtained. The condition that α1(m) is false is satisfied by requiring that
S(x)&E(x) is false, i.e., there are no students employed. It is easily shown that the
empty node is not obtained by making α2(m) empty. Therefore the priority of p1 is
higher than that of p2 and it is required that S or E is the variable predicate.

 Suppose that for another student k (Ken), E(k) is another plausible query. Adding

Prov(X;S(k),Y) ←, (7’)

require that Prov(□;E(k)) is proved. A success-branch is by making α2(x) in (10)
empty at x=x’,

Prov(□;E(k)) -
- Prov(□;E(k),p2(x’))&Prov(p2(x’),α2(d);p2(d))&Prov(p2(x’),A(d’);E(d’),α2(d’)) -.

The first meta-predicate of the second node is replaced by Prov(□;A(k),E(k),p2(k)) by
matching with (5) for x’=k and from P4. From (6) with P4 and (7’) with P1 the first
meta-predicate is removed. The third and the last nodes are

- Prov(p2(k),α2(d);p2(d))&Prov(p2(k),A(d’);E(d’),α2(d’)) - □.

The first meta-predicate of the third node is removed by applying A4 with
α2(d)=~α21(d)&α22(d) and by matching with (5) by unifying α21(d) and α22(d) with
E(d) and A(d), respectively. The second meta-predicate is also removed by applying
A2 and A3. The priority of p2 is higher than that of p1 and the variable predicate is A
or E. The condition that α2(k) is false is satisfied by requiring that ~E(k)&A(k) is
false. It is easily shown that p1(k) and p2(m) are true, i.e., Ken is abnormal as a
student and so is Mary as an adult. In this case the condition that S(x)&E(x) is false is
not correct since α1(k) is true. An alternative is that α1(x)≡S(x)&E(x)≡x=k, i.e., only

Ken is abnormal as a student. Similarly α2(x)≡~E(x)&A(x)≡x=m, i.e., only Mary is
abnormal as an adult.

 Similarly the following Example 9 is proved in MC. Let Q(x) be a conjunction of
positive or negative predicates except p and if Q(x) includes p then p is positive with
functions.

Example 9 Let T be p(x)←Q(x), or {p(x),p(a)}←Q(x), or {p(x),p(f(x))}←. Then
p(x)=Q(x), or p(x)={Q(x)&~p(a), p(a)&x=a}, or p(x)=p(x)&{p(f(-2,x)),p(f(2,x))},
respectively, is proved in MC.

 As seen in Examples 8 and 9, to prove ~p(t) for a given term t, a sufficient condition
is that T made p(t) false is required. Generally this form of circumscription is
obtained by using generalized variable-predicates defined below.

Definition 10 Let S be a subset of the Herbrand universe of T. Then T([p/□,S]) is
defined by the set of clauses of the form Z←W in T for which W doesn’t include p(t)
and Z includes p(t) and from which p(t) is removed for t in S. Generalized variable-
predicates are defined such that T([p/□,S]) is satisfied when T([p/□,S]) is consistent
with T.

Theorem 11 If (T+T([p/□,S])) is consistent then ~p(t) for t in S is proved with the
generalized variable-predicates.

Proof: Let α(x) be false for x in S, and be p(x) for x not in S. Then p(x)←α(x) is
proved and T(p/α) is proved assuming T([p/□,S]).

 It is noted that for c not in T, ~p(c) is not proved since α is a model of p, t is in the
Herbrand universe of T. It is also noted that ~p is not proved from T([p/□,S]), but is
proved by circumscription with generalized variable-predicates. Example 7 is also
shown by Theorem 11. Because let S be the set of x such that x≠a,b. Since
T([p/□,S]) is empty and consistent with T, without generalized variable-predicates,
α(x) is given by the one which is false for x≠a,b and is p(a) for x=a and p(b) for x=b.
 Usually the consistency check is undecidable. By encapsulating the consistency
check as an oracle the logic programming with oracles is given in the following.

Definition 12 For a term t, O(p(t):S) is the oracle answering true if T([p/□,S’]) is
consistent with T and false otherwise, where S’ is the sum of S and t. The extended
predicate Prov(X;Y:π,Σ) is defined from Prov(X;Y) by adding two variables π and Σ
for predicates and subsets of the region of x, respectively. The oracle and
Prov(X;Y:π,Σ) satisfy the following meta-rules O1, O2, and G for the initial goal
clause.

O1 Prov(X,r(x);Y:r(x),Σ) ← Prov(X,r(x);O(r(x):Σ),Y:r(x),Σ),

O2 Prov(X;Y:r(x),Σ) ← Prov(X;Y:π,Σ’),

G ← Prov(□;□:π,Σ),

where r is the variable for predicates and Σ’ is defined by adding x to Σ.

 O2 is for preserving the information regarding Σ obtained in the proof. The
following Theorem 13 is immediately obtained.

Theorem 13 Let Mo be the meta-system M for T with O1 and O2. If ~p(t) is proved
by using C1 once then ~p(t) is proved in Mo, and Mo is decidable regarding
circumscription. The converse is obtained for MC with generalized variable-
predicates.

Example 14 Let T be p(a)← and p(x)←p(f(x)). Suppose that there is not an n such
that a=f(n,b). Let S be the set of (b, f(b), ..., f(n,b), ...). Then T([p/□,S]) is empty.
Therefore ~p(b) is proved without generalized variable-predicates. In Mo there is the
success-branch due to the oracle.

Prov(p(b);□) - Prov(p(b);O(p(b):S)) - □.

 It is noted that the oracle in Definition 12 is for queries with the existential quantifier.
For the query, α(x)≡f(n(x),x)=a, where n(x) is the Skolem’s function for n, the query
includes the universal quantifier regarding x. In this case the oracle requires the
information about the region in which α is false and is more complicated than the one
give above.

Definition 15 Let O(X1,p;Y1:Sp) is the oracle answering true if T([p/□,Sp]) is
consistent with T and false otherwise, where Sp is the complement of the region in
which Y1(x)←p(x)&X1(x) is proved. The oracle satisfies

Ou Prov(X,X1(x),r(x);Y1(x),Y:π,Σ) ← Prov(X;O(X1,r;Y1:Sr),Y:π,Σ),

which is proved by Theorem 11. By using Ou, with α(x)≡f(n(x),x)=a, α(x)←p(x) is
proved since there is a success-branch such that

Prov(p(c);α(c):π,Σ) - Prov(□;O(p;α:Sp):π,Σ) - □,

where Sp is x such that f(n,x)≠a for all n. The empty node is given by the oracle since
T([p/□,Sp]) is consistent with T.

 As is easily seen when T is {p(a),p(b)}←, ~p(a) or ~p(b) can be inferred with
generalized variable-predicates. Therefore there is a problem in the definition of
generalized variable-predicates. To remove the problem one way is to require that
T([p/□,S]) is empty. However it is well known that meaningful results aren’t given
under the condition. Another way is to restrict the inference regarding ~p(a) or ~p(b)
as follows.

Definition 16 For a generalized variable-predicate p(t) let φ be a disjunction of
positive or negative predicates. Consider the restriction that ~p(t) can’t be inferred if
there is a clause φ such that {p(t),φ} is proved but φ is not proved in T. ‘Semi-
general’ and ‘restricted’ variable-predicates are the cases where φ is the disjunction
of positive p and φ is any disjunction not including ~p(t), respectively.

 It is easily shown that for the semi-general case the proof of ~p doesn’t depend on S
but depends on another circumscribed predicate q is used in the proof. For the
restricted case it is also shown that the necessary and sufficient condition to prove
~p(t) is that there are no clauses in T including p(t). An easy way to implement the
above restrictions is the use of oracles answering under the restrictions. Then the
oracle for the semi-general case is the most undecidable among the three.

4 Conclusion
A goal-oriented prover for solving circumscription problems was presented. A
feature of the prover is that the priority and the variable predicates are suggested so as
to prove the intended results. Based on the prover, formulae were given which satisfy
circumscription formulae without variable predicates for the set of typical clauses of
predicates with functions. Practically circumscription is applied to prove the negation
of a predicate. For the formulae given above to be false, the condition must be
satisfied that T made p false is consistent with T. Variable predicates are generalized
so as to prove T made p false. By the generalization it was shown that
circumscription problems are practically solved by giving a model to show the
consistency for the cases where predicates include functions for which the problems
become undecidable. Generally consistency problems are undecidable. By
encapsulating the consistency check as an oracle a decidable prover was presented for
queries without universal quantifiers. The oracle with universal quantifiers was also
given. This prover is practical in the meaning that the consistency is proved by giving
a model of T. The restrictions, semi-general and restricted, were considered for
generalized variable-predicates not to infer undesirable predicates. These restrictions
are additive and more unified formulations are desired.

References

1. G. Antoniou. Nonmonotonic Reasoning. The MIT Press, 1997.
2. M. Arai. A Parallelism-Oriented Prover with a Meta-Predicate. In Proceedings of Second
 IEEE International Conference on Intelligent Systems, pages 138-143. IEEE, 2004.
3. P. A. Bonatti and N. Olivetti. Sequent Calculi for Propositional Nonmonotonic Logics.
 Transactions on Computational Logic, 3(2):226-278. ACM, 2002.
4. M. Cadoli and M. Schaerf. A Survey of Complexity Results for Non-Monotonic Logics.
 The Journal of Logic Programming, 17:127-160. Elsevier Science Publishing, 1993.
5. U. Egly and H. Tompits. Proof-Complexity Results for Nonmonotonic Reasoning.
 Transactions on Computational Logic, 2(3):340-387. ACM, 2001.
6. V. Lifschitz. Computing Circumscription. In Proceedings of IJCAI-85,121-127, 1985.
7. J. McCarthy. Applications of Circumscription to Formalize Commonsense Knowledge.
 Artificial Intelligence, 28:89-116, 1986.
8. I. Niemela. Implementing Circumscription Using a Tableau Method. In Proceedings of
 ECAI 96. pages 80-84, John Wiley & Sons,1996.
9. W. Pohlers. Subsystems of Set Theory and Second Order Number Theory. Handbook of
 Proof Theory (S. R. Buss, Editor), pages 209-336, Elsevier Science B. V., 1998.
10. T. C. Przymusinski. An Algorithm to Compute Circumscription. Artificial Intelligence,
 38:49-73, 1989.

Constraint Satisfaction

Genetic Algorithms for Dynamic Variable

Ordering in Constraint Satisfaction Problems

H. Terashima-Maŕın, R. de la Calleja-Manzanedo, and M. Valenzuela-Rendón

Center for Intelligent Systems, Tecnológico de Monterrey
Ave. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León 64849 Mexico

{terashima@itesm.mx,rlight renecm@hotmail.com,valenzuela@itesm.mx}

Abstract A Constraint Satisfaction Problem (CSP) can be stated as
follows: we are given a set of variables, a finite and discrete domain for
each variable, and a set of constraints defined over the values that each
variable can simultaneously take. The objective is to find a consistent
assignment of values to variables in such a way that all constraints are
satisfied. To do this, a deterministic algorithm can be used. However,
the order in which the variables are considered in the search process
has a direct impact in the efficiency of the algorithm. Various heuristics
have been proposed to determine a convenient order, which are usually
divided in two types: static and dynamic. This investigation in particular
uses Genetic Algorithms as a heuristic to determine the dynamic variable
ordering during the search. The GA is coupled with a conventional CSP
solving method. Results show that the approach is efficient when tested
with a wide range of randomly generated problems.

1 Introduction

A Constraint Satisfaction Problem [1] (CSP) is composed of a finite set of vari-
ables, a discrete and finite domain of values for each variable, and a set of
constraints specifying the combinations of values that are acceptable. The aim
is to find a consistent assignment of values to variables in such a way that all
constraints are satisfied, or to show that a consistent assignment does not exist.
Several deterministic methods exist in the literature to carry out this process
[2,1], and solutions are found by searching systematically through the possible
assignments to variables, usually guided by heuristics. Many investigations have
shown that the order in which the variables are considered for instantiation in
the search has a direct impact in its efficiency [3]. There is a wide range of prac-
tical problems that can be modeled as CSPs. Applications of the standard form
of the problem have included theorem proving, graph coloring and timetabling,
machine vision, and job-shop scheduling [1]. Various heuristics have been pro-
posed in the literature to determine an appropriate variable ordering, which can
be classified in two types: static and dynamic. The heuristics of Static Variable
Ordering (SVO) generate an order before the search begins, and it is not changed
thereafter. In the heuristics of Dynamic Variable Ordering (DVO), the order in
which the next variable to be considered at any point depends on the current

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 35-44

state of the search. It has been observed that heuristics for DVO outperform
those heuristics for SVO [4,3]. This article presents an investigation which uses
a Genetic Algorithm (GA) [5] as a dynamic heuristic to determine the appropri-
ate variable ordering during the search. The GA is used with a Forward Checking
algorithm (FC) and in this scheme the FC algorithm calls the GA which decides
the next variable (one or more) to be instantiated. Results of this approach are
compared against three other heuristics that have been widely used in similar
studies and have provided reasonable performance for a variety of problems.

The reminder of this article is organized as follows. The next section describes
the proposed solution model. Section 3 presents the results obtained and their
discussion when the model is tested over different instances of CSPs. Finally, in
Section 4 the conclusions are included.

2 Methodology

This report presents a combination of aspects of Constraint Satisfaction and
Evolutionary Computation. This association has been used before. For instance,
recent work by Craenen et al. [6] presents a comparative study on the perfor-
mance of different evolutionary algorithms for solving CSPs. Research by Eiben
[7] also discusses a methodology and directions for developing hybrid approaches
with both techniques. The work presented in this paper, however, establishes the
connection in a different way by concentrating on the problem of dynamic vari-
able ordering when solving constraint satisfaction problems.

We herein describe a model to define the instances of CSP problems used
in this work; they are binary CSPs (problems in which the constraints involve
only two variables) defined by a four-tuple 〈n, d, p1, p2〉, where n is the number
of variables, d is the domain associated with each variable (for this investigation
it is the same for all variables), p1 is the probability that there is a constraint
between a pair of variables, and p2 the probability that, given that there is a con-
straint between two variables, the pair of values is inconsistent. This means that
p1 and p2 represent an approximation of constraints in the problem (constraint
density) and a number of inconsistent pairs of values (constraint tightness), re-
spectively. A problem of this kind will have p1

n(n−1)
2 constraints, and p2d

2 over
each constraint. The same model has been used in other similar studies [8,9,10].

As a basis for comparison, this work uses several variable ordering heuristics
that have been previously studied. These algorithms are based on the principle
of selecting the ‘most constrained variable’; the heuristics attempt to fail as soon
as possible when instantiating variables, what leads to reinstantiate the variables
with other values, and so eliminate search subregions of considerable size. These
heuristics are the following:
Brelaz. This heuristic was designed for solving graph coloring problems. For a
partial coloring, the saturation degree of a vertex is the number of different colors
used to color the adjacent vertices. For our problem, the heuristic selects first
the variable with maximum saturation degree (the variable with fewer values in

36 H. Terashima, R. De la Calleja, M. Valenzuela

its domain). Then, it breaks ties by selecting the variable with maximum degree
(the degree for a variable is the number of adjacent uninstantiated variables).
Rho. This heuristic selects first the variable that maximizes equation ρ =∏

c∈C−Ci
(1 − pc). That is, the variable that minimizes

∏
c∈Ci

(1 − pc), where
C is the set of constraints in the problem, Ci is the set of incident constraints
in the current variable Vi and if a constraint c in average limits a fraction pc

of possible assignments, a fraction 1 − pc is allowed. Thus this heuristic selects
first the variable with the most and/or tightest constraints. The idea behind it
is that by selecting this variable, the remaining subproblem contains a larger
number of solutions (solution density ρ). The heuristic, however, does not take
into account the available domain of the variables.
Kappa. This heuristic selects the variable in such a way that the parameter
κ is minimized, where κ is a measure over the subproblem left after extracting

the variable Vi and is given by the following equation: κ =
−

∑
c∈C

log2(1−pc)∑
v∈V

log2(dv)

where V is the set of variables in the problem, and dv is the domain size of
variable v. This heuristic depends on the proposal by Gent et al. [11] in which
κ captures the notion of the constrainedness of an ensemble of problems. The
problems with κ � 1 are likely to be under-constrained, and solvable, whereas if
κ � 1, these problems are likely to be over-constrained and unsolvable. Similarly
as the heuristic Rho, this heuristic intends to select a variable that will leave a
subproblem with high probability of being solvable.

More formal description of each heuristic can be found in the work by Gent
et al. [12].

2.1 Solution Approach

The method for solving the CSPs in this work is the Forward Checking (FC)
algorithm. FC takes a variable from the uninstantiated ones, sets a value for
it, and propagates constraints (it keeps consistency in the domains of the adja-
cent and remaining variables). If one of those variables finishes with an empty
domain, then the algorithm chronologically backtracks (BT), otherwise it con-
tinues with the next variable. This algorithm was chosen because it provides
updated information in relation to the unsolved subproblem in each iteration.
This information is in fact used by the heuristics to determine the next variable
to instantiate. In our hybrid approach, the FC algorithm invokes the GA which
runs for a number of cycles and determines the variable (it may be one or more)
to be instantiated. Figure 1 illustrates the implementation diagram.

The variable(s) to be instantiated by the FC algorithm are taken from the
best individual in the last cycle of the GA, every time this is called. The se-
lected variables are those placed to the left-most part of the chromosome (a
permutation-based representation is used) where each gene represents the index
of each uninstantiated variable. n is the number of variables in the chromosome.

When the FC algorithm starts solving a given instance of CSP, it calls the
GA, which initializes the population (popsize is 15n) with randomly generated

Genetic Algorithms for Dynamic Variable Ordering in Constraint Satisfaction Problems 37

Instance
Generator

CSP
• Variables
• Domains
• Constraints

Forward Checking

Select variables

Instantiation

Constraint
propagation

GA

Outcome
Valid

assignment /
failure

Figure 1. Flowchart of the proposed approach.

Table 1. Control parameters for the GA.

Parameter Initial Following
Population 15n 10n

Cycles 12n 8n

Replacement 60% 60%
Crossover Probability 90% 90%
Mutation Probability 10% 10%

chromosomes, runs for 12n cycles, and returns the selected variables for instan-
tiation (step). FC is then used to assign values to step variables (the ones on
the left), so there will be n− step left to assign. For the subsequent invocations,
the population in the GA is initialized based on the best chromosome of the
previous call (we call it base chromosome and it is the one used to select the
step variables). Now, the new population of size 10(n − step) is created, which
is run for 8(n − step) cycles. The chromosome used to generate the new popu-
lation is modified using random alterations. A copy of the base chromosome is
also inserted in the population. The process continues until the complete CSP
has been solved. The type of the proposed GA is steady state, with tournament
selection, PMX crossover, and swap mutation. The GA was empirically tunned
in its parameters and the final parameter set is presented in Table 1.

The objective function in the GA is given by the following expression:
Ev = S1 + nS2 where S1 =

∑step
i=1

Ti

Ai(Di)2
Dmax

2(n − i)2 and

S2 =
∑n

j=step+1 Dj

(
j
n

)2
being n the number of variables remaining to be in-

stantiated, step the number of variables the GA returns to the FC algorithm
to be instantiated, Di the size of the current available domain for variable Vi,
Dmax is the largest domain associated to a variable, Ai is the number of adjacent
variables to variable Vi and Ti =

∑n
j=step+1

confi,j

DiDj
where confi,j is the number

of pairs in conflict between the current available values for variables Vi and Vj .
The best individual is the one that maximizes the objective function above.

This fitness function combines ideas from both the Brelaz and Kappa heuristics,
specifically, with S1 we are looking for those variables with small available do-
main and at the same time with constraints with high degree (with Ti

Ai
), while

38 H. Terashima, R. De la Calleja, M. Valenzuela

S2 is used to emphasize that variables with small available domain should be se-
lected first (shifted to the left side). From this expression, it can be observed that
for smaller domains of the involved variables the value on S1 would increase. It
is also beneficial to have those variables to the left of the chromosome, and this
is achieved by introducing the factor (n− i)2. The value that makes a difference
between two or more variables with the same minimal domain is Ti which is a
sum of the tightness for each uninstantiated variable and adjacent to variable
Vi. The quotient of Ti divided by Ai in S1 would give us an idea of how ’hard’ in
average are the constraints linking Vi with the rest of the variables, considering
only their available values. S2 gives preference to select first those variables with
smaller domain. This effect is achieved by maximizing the sum of the available
domains of the remaining variables. Taking advantage on this, we also consider
shifting variables with smaller available domains to the first positions in the
chromosome. We give a weight to each position with (j/n)2. It is also important
to stress that when the FC algorithm is combined with heuristics Rho, Kappa,
or Bz, just a single variable is returned for instantiation, that is, parameter step
is only applies for the FC-GA combination.

3 Experiments and Results

This section presents the most important results obtained by the proposed ap-
proach. The experiments are divided following two different ways for generating
the instances: in the first one, the generated problem instances have the param-
eter p2 constant, that is, all constraints have the same number of inconsistent
pairs; while in the second one, this parameter is randomly varied, leaving dif-
ferent number of inconsistent pairs between constrained variables. This way of
generating the instances allows to observe the behavior of the various heuristics
when the parameters used to define an instance are not uniform. For both cases,
the performance of the algorithms is based on the number of consistency checks
performed by the FC algorithm, with the aim to minimize it. The number of
consistency checks is the most common way of comparing algorithms of this kind
when solving constraint satisfaction problems, but there exist two other usual
criteria such as the number of expanded nodes in the search tree and the number
of backtracks. In the case of the GA, results report the average and best result
over ten runs of the same instance.

Problem instances with uniform p2

We present results for instances with 10 and 20 variables and domain size of
10. For both sizes, three different experiments are carried out, each one with a
different value for parameter p1 (constraint density).

First, we report results for instances with 10 variables. 40 random instances
were generated for each value of p2, the FC algorithm is executed with each
heuristic and each instance, and then the average number of consistency checks
is computed. That is the number plotted in the figures. For the GA case, each
instance is run 10 times and then their average is used to obtain the average
over the 40 instances, which is the one reported in the figures. p2 is increased

Genetic Algorithms for Dynamic Variable Ordering in Constraint Satisfaction Problems 39

0

500

1000

1500

2000

2500

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mean
checks

����������

�

�

�
�

�
�

�
�
�

�
�
�
����

�
����

�
��������

++++++++++
+

+

+
+
+

+

+
+
+
+
++
++
++
++++++++++++++

(a) p1 = 0.75, step = 1

0

500

1000

1500

2000

2500

3000

3500

4000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

���������
��

�

�

�

�

�

�
�

��
��������������������

+++++++++
++

+

+
+

+

+
++
++
++++++++++++++++++++

(b) p1 = 0.75, step = 2

0

1000

2000

3000

4000

5000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mean
checks

Ka

������
�
�

�

�

�
�
�

�

�
�
��

����������������������

�

Bz

++++++
+
+

+

+

+

+

+
+

+
+
++
++++++++++++++++++++++

+
Rho

GA best
GA avr

(c) p1 = 1.0, step = 1

0

1000

2000

3000

4000

5000

6000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ka

�������
�

�

�
�

�

�

�
�
�
�
�����������������������

�

Bz

++++++
++
+

++
+

+

+
+
+
++++++++++++++++++++++++

+
Rho

AG best
AG avr

(d) p1 = 1.0, step = 2

Figure 2. Result on problems 〈10, 10〉 with uniform p2.

from 0.2 to 0.98 with steps of 0.02, trying to observe in detail the behavior of
each heuristic in this range, and specifically over the phase transition (the region
where the most difficult instances can be found). Figure 2 shows the first three
series of experiments. In Figures 2 ((a) and (c)) the value for p1 is 0.75 and 1,
respectively.

The parameter step is set to 1. It can be observed that for all values of p1, the
GA approach shows slightly better results than the other single heuristics. It is
also shown that there is an improvement from the approach when the instances
have higher constraint density, for example, when p1=1, it is clear that the FC-
GA combination achieves better results (see Figure 2 (c)). Parameter step was
intended to allow the FC-GA combination to select more than one variable to

40 H. Terashima, R. De la Calleja, M. Valenzuela

0

20000

40000

60000

80000

100000

120000

0.22 0.24 0.26 0.28 0.3 0.32 0.34

Mean
checks

p2

�

�

�

�

�

�

�

+

+
+

+

+

+
+

(a) p1 = 0.75, step = 1

0

20000

40000

60000

80000

100000

120000

140000

160000

0.22 0.24 0.26 0.28 0.3 0.32 0.34

p2

�

�
�

�

�
�

�

+
+

+

+

+
+

+

(b) p1 = 0.75, step = 2

0

50000

100000

150000

200000

250000

300000

0.18 0.2 0.22 0.24 0.26 0.28

Mean
checks

p2

Ka

�

�

�

�

�
�

�

Bz

+

+

+

+

+
+

+
Rho

GA best
GA avr

(c) p1 = 1.0, step = 1

0

50000

100000

150000

200000

250000

300000

0.18 0.2 0.22 0.24 0.26 0.28

p2

Ka

�

�

�

�

�
�

�

Bz

+

+

+

+

+
+

+
Rho

GA best
GA avr

(d) p1 = 1.0, step = 2

Figure 3. Results on problems 〈20, 10〉 with uniform p2.

instantiate at each invocation. When we set step = 2 results can be observed
in Figure 2 ((b) and (d)). We found for these cases and even when step had a
higher value, single heuristics outperform our strategy.

The connection we deduced from these results is that indeed assigning a value
to the most-left variable produces changes in the domains of the uninstantiated
variables including that one selected by the parameter step. Consequently, those
changes affect the domains of this variable, and so its selection is no longer the
best one.

We now present results for instances with 20 variables. In this case, 20 dif-
ferent instances were randomly generated and tested with the FC algorithm and
for each different value of p2. The average number of consistency checks is re-
ported in the figures. For the GA, the figures report the average of the average

Genetic Algorithms for Dynamic Variable Ordering in Constraint Satisfaction Problems 41

of ten runs for each instance, the same way as in the previous experiment. p2

is increased by steps of 0.02. For these results, we concentrate in the range of
values for p2 between 0.22 and 0.34, where the phase transition appears. See
Figure 3. It is clear in Figures (a) and (c) that the GA performs fewer number
of constraint checks when step=1. Again, the GA shows better performance for
highly constrained problems (p1 = 0.75 and p1 = 1). However, it is also true
that as we increase the value in step to 2 (see Figure 3 (b) and (d)), the the
advantage of the GA with respect to the other heuristics is less evident. In fact,
we ran experiments for greater values of step (up to 5), but the best performance
was found when step=1.

Problem instances with non-uniform p2

In this set of experiments, the probability for inconsistent values between con-
strained pairs of variables (p2) is not uniform. Because of this non-uniformity, a
given variable may have more information, in addition to its available domain
and degree, to be considered when selecting variables for instantiation. Heuris-
tics Rho and Kappa, as well as our approach, exploit this situation. It is not the
case with heuristic Bz, so that it is expected to produce different behavior in the
results for the various heuristics.

For these experiments, instances have 20 variables, domain size of 10, and
other additional particular features were considered. Specifically, for 15% of the
constraints in an instance, parameter p2 was set to 0.8, while for the remaining
85% of constraints, the same parameter has a value of 0.2. Now, what is inter-
esting to observe is the behavior of the heuristics when the constraint density
is varied (p1). This parameter varies from 0.2 through 1 with steps of 0.02. For
each value of p1, 20 random instances were generated, each one was run 10 times,
and the average number of consistency checks was computed.

Figure 4 (a) shows results when comparing all heuristics and the GA ap-
proach with step=1. As expected, the performance of heuristic Bz is very poor
with respect to the other heuristics. The GA clearly beats all other heuristics
for a wide range of values for p1, including in those regions where the FC algo-
rithm has its largest computational effort in combination with any heuristic. It
is always possible, however, that by using either Kappa or Rho, a better result
can be obtained for a particular instance, but let us recall that the result re-
ported here in the GA case, is an average over a set of instances for each value
of p1. When observing results on experiments for step=2, Kappa, in general,
has better performance than Rho and the GA. Nevertheless, the GA presents
a reasonable performance over these instances, caused by the inclusion of the
constraint density in the fitness function.

In order to support our study, statistical tests were run to validate the re-
sults. Despite of this, one may wonder about the overall performance of our
strategy given that the computational cost of the GA is naturally higher given
his population-based approach. It is then interesting to explore the trade-off
between the gain in the number of constraint checks produced by the FC algo-
rithm against the computational cost by any of the heuristics used including our
approach. Results confirm the outcome on the previous experimentation. For

42 H. Terashima, R. De la Calleja, M. Valenzuela

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mean
checks

p1

Ka

����������
���

�
�
�
�

�
�

�

�
�

���
��

�
�

�

Bz

++++++++++

+

+

+

+

+

+

+

++

+

++

+

+

++
+

+

+

+
Rho

GA best
GA avr

(a) non-uniform p2, step = 1

Figure 4. Results on problems 〈20, 10〉 with non-uniform p2.

instance for less dense graphs with p1 = 0.5 the best heuristic is Bz, and the
GA has to work 140% more. But for dense graphs with p1 = 1 the GA clearly
generates better results on the number of constraint checks, with an additional
cost of only 34% with respect to the effort taken by the Kappa heuristic. We
think that with additional refinement of the FC-GA combination this percent-
age can be reduced, but this work is contemplated in future extensions of this
investigation.

4 Conclusions

This article has proposed an innovative approach for using a GA to generate a
dynamic variable ordering when solving CSPs. Using this scheme, under certain
configuration of the GA, results are efficient, in terms of consistency checks.
After testing for different values of parameter step (the number of variables to
be instantiated before calling the GA again), it was found that best performance
is shown when step=1. By establishing step=1, the fitness function in the GA
could be seen as a deterministic heuristic that can be used to evaluate each of the
uninstantiated variables and select that variable which maximizes the measure.
This can be used as a single heuristic without considering the GA and probably
would obtain as good results or better than those provided by the GA.

The FC-GA combination shows in general better results than the other
heuristics, especially for highly constrained problems. It was also observed that
when the probability p2 is not uniform, the GA has a very competitive perfor-
mance, achieving in some cases much better results than the other heuristics. The

Genetic Algorithms for Dynamic Variable Ordering in Constraint Satisfaction Problems 43

success of the GA in these cases is that the fitness function takes into account
the degree of a variable.

Acknowledgments

This research was supported by ITESM under the Research Chair CAT-010 and
the CONACyT Project under grant 41515.

References

1. E. Tsang. Foundations of Constraint Satisfaction. Computation in Cognitive
Science. Academic Press, London, 1993.

2. V. Kumar. Algorithms for constraint satisfaction problems: A survey. AI Magazine
13(1):32-44, 1992.

3. R. Dechter and I. Meiri. Experimental evaluation of preprocessing algorithms for
constraint satisfaction problems. Artificial Intelligence, 68(2):211-242, 1994.

4. P.W. Purdom. Search rearrangement backtracking and polynomial average time.
Artificial Intelligence, 21:117-133, 1983.

5. D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley, Alabama, 1989.

6. B. G. W. Craenen, A.E. Eiben, and J.I. van Hemert. Comparing evolutionary al-
gorithms for binary constraint satisfaction problems. IEEE Transactions on Evo-
lutionary Computation, 7(5):424–444, 2003.

7. A. E. Eiben. Evolutionary algorithms and constraint satisfaction: Definitions, sur-
vey, methodology and research directions. pages 13–58, 2001.

8. P. Prosser. Binary constraint satisfaction problems: Some are harder than others.
In Proceedings of the European Conference in Artificial Intelligence, pages 95–99,
Amsterdam, Holland, 1994.

9. B.M. Smith. Phase transition and the mushy region in constraint satisfaction
problems. In Proceedings of the European conference in Artificial Intelligence,
pages 100–104, Amsterdam, Holland, 1994.

10. B. M. Smith. Constructing an asymptotic phase transition in binary constraint
satisfaction problems. Journal of Theoretical Computer Science (Issue on NP-
Hardness and Phase Transitions), 265(1):265–283, 2001.

11. I.P. Gent, E. MacIntyre, P. Prosser, and T. Walsh. The constrainedness of search.
In American Association for Artificial Intelligence, editor, In Proceedings af AAAI-
96, 1996.

12. I.P. Gent, E. MacIntyre, P. Prosser, B.M. Smith, and T. Walsh. An empirical study
of dynamic variable ordering heuristics for the constraint satisfaction problem. In
Proceedings of CP-96, pages 179–193. Springer, 1996.

44 H. Terashima, R. De la Calleja, M. Valenzuela

Two Hybrid Tabu Scatter Search Meta-heuristics for
Solving MAX-SAT Problems

Dalila Boughaci1, Habiba Drias2 and Belaid Benhamou3

1 University of Sciences and Technology – ITS- USTHB
 BP 32, El-Alia Beb-Ezzouar, 16111, Algiers, Algeria

Dalila_info@yahoo.fr
2 Institute of Computer Science –INI-

BP 68M OUED SMAR EL HARRACH , ALGER
 drias@wissal.dz

3
 LSIS - UMR CNRS 6168 MARSEILLE CEDEX 20

belaid.benhamou@cmi.univ-mrs.fr

Abstract. Tabu search is a meta-heuristic that has been successfully applied to
hard optimization problems. In this paper, two new hybrid meta-heuristics are
studied for the NP-Complete satisfiability problems, in particular for its
optimization version namely MAX-SAT. At first, we present a tabu scatter
search approach, TS+SS, which is a tabu search procedure extended by a
commonly shared collection of scatter elite solutions. Then, we introduce a
scatter tabu search approach, SS+TS, which is a scatter search procedure
enhanced with a tabu search improvement strategy. Experiments comparing the
two approaches for MAX-SAT are presented. The empirical tests are performed
on DIMACS benchmark.

1 Introduction

Tabu search is one of the meta-heuristic methods. It has been applied to various
optimization problems with a great success. In this work, we propose two hybrid
approaches based on tabu search meta-heuristic to solve the satisfiability problems.
Given a collection C of m clauses involving n Boolean variables, the satisfiability
problem is to determine whether or not there exists a truth assignment for C that
satisfies the m clauses. A clause is a disjunction of literals. A literal is a variable or its
negation. A formula in conjunctive normal form (CNF) is a conjunction of clauses.
The formula is said to be satisfiable if there exists an assignment that satisfies all the
clauses and unsatisfiable otherwise. In the latter situation, we are interested in other
variants of SAT. We mention among them the maximum satisfiability problem
(MAX-SAT). The latter consists in finding an assignment that satisfies the maximum
number of clauses. MAX-SAT is an optimization variant of SAT. They are an
important and widely studied combinatorial optimization problem with applications in
artificial intelligence and other areas of computing science. The decision variants of
both SAT and MAX-SAT problems are NP-Complete [4, 8].
Many algorithms have been proposed and important progress has been achieved.
These algorithms can be divided into two main classes:

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 45-54

- Complete algorithms: dedicated to solve the decision version of SAT problem. The
well- known algorithms are based on the Davis-Putnam-Loveland procedure [5]. Satz
[13] is a famous example of a complete algorithm.
- Incomplete algorithms: they are mainly based on local search and evolutionary
algorithms. Local search[16], tabu search [14, 1, 2], simulated annealing [10], genetic
algorithms [7], GRASP[15], scatter search [6] and recently memetic algorithms [3]
are examples of incomplete algorithms for SAT. These meta-heuristics are a good
approach for finding a near solution of very large instances, in particular for
unsatisfiable or unknown instances.
In this paper, we propose, at first, a tabu scatter hybrid procedure for MAX-SAT
problems. Its algorithmic backbone is a tabu search (TS) which is extended by a
commonly shared collection of elite solutions. This collection is maintained by the
tabu search, which inputs quality solutions and is used by the scatter search to
construct combined solutions. Then, a scatter search variant is proposed for the same
problem. Its algorithmic backbone is a scatter search (SS) combined with a tabu
search (TS) improvement strategy. The latter performs an intensified search of
solutions around the scatter search regions. Experiments comparing the two
approaches for MAX-SAT are presented. The empirical tests are performed on some
well-known DIMACS benchmark instances. The paper starts with a brief review of
the tabu search. Section 3 introduces the scatter search approach. Section 4 presents
our new tabu scatter search approach. Section 5 presents the scatter tabu search
approach. Our comparative study and experiments results are summarized in section
6. Finally, conclusion and future work are explained in section 7.

2 A Tabu Search Meta-heuristic

Tabu search is a meta-heuristic that has been proposed by Fred Glover [9]. It has been
applied to various optimization problems including the satisfiability problem [14, 1,
2] and job shop scheduling [17]. Tabu search starts with an initial configuration
generated randomly, then, the best neighbor solutions are selected. Tabu search uses
also a list called "tabu list" to keep information about solutions recently selected in
order to escape the solutions already visited. In the case where a tabu move applied to
a current solution gives a better solution; we accept this move in spite of its tabu
status by aspiration criterion. The search stops when the quality of the solution is not
improved during a maximum number of iterations or when we reach a global optimal.

2.1 Tabu Search Items

In order to use tabu search for solving MAX-SAT problem, we define the following
items:
- A Solution is represented by a binary chain X (n Vector); each of whose
components xi receives the value 0 or 1. It is defined as a possible configuration
verifying the problem constraints and satisfying the goal that consists in finding an
assignment of truth values to the n variables that maximizes the sum of satisfied
clauses.

- A move is an operator used to generate neighbor solutions. An elementary move
consists in flipping one of the variables of the solution. The neighborhood of a
solution is constituted by all the solutions obtained by applying an elementary move
on this solution. A variable is in tabu state if it has been modified during the current
move and it keeps it during a certain number of iterations called tabu tenure.
- A Tabu List is used to keep information about the solutions already visited in order
to escape local optima by searching in new regions not already explored.

3 A Scatter Search Meta-heuristic

Scatter search [12] is a population-based meta-heuristic. It is an evolutionary method
that constructs solutions by combining others. The approach starts with an initial
population (collection of solutions) generated using both diversification and
improvement strategies, then, a set of best solutions (reference set that incorporates
both diverse and high quality solutions) are selected from the population. These
collections of solutions are a basis for creating new solutions consisting of structured
combinations of subsets of the current reference solutions.

3.1 A Scatter Search Template

Four methods are used to achieve the scatter search template:

- A Diversification Generator. The generator creates, from a seed solution, a
collection of diverse solutions, applies a heuristic process for improving these
solutions and designates a subset of the best solutions to be reference solutions.
Solutions gain membership to the reference set according to their quality or their
diversity.

- An Improvement Method. An Improvement method transforms a trial solution into
one or more enhanced trial solutions. To improve the quality of solutions we often
apply a heuristic process.

- A Subset Generation Method. A subset generation method operates on the
reference set (collection of elite solutions), to produce a subset of its solutions as a
basis for creating a combined solution.

- A Combination Operator. A solution combination method transforms a given
subset of solutions created by the subset generation method into one or more
combined solutions. In this step, we create new points consisting of structured
combinations of subsets of the current reference solutions.

4 A Tabu Scatter Search

In order to take advantage of the individual benefits of a single-solution oriented
approach and a population oriented approach, we propose a hybrid tabu scatter search

approach. Its backbone is a basic tabu search that works on a single solution by
building neighborhoods from which a best admissible candidate is passed to the
scatter search process. The hybrid tabu search makes use of a population based
strategy and maintains a collection of elite solutions. More precisely, the tabu scatter
hybrid (TS+SS) procedure starts with an initial solution generated randomly; then, a
basic tabu search is started. The duration of this second phase (TS) is given by an
input parameter iterTS corresponding to the number of iterations of the basic TS
process (see code below). During the TS phase a new best solution is always
deposited into the collection. Every “iterSS” iterations the algorithm calls the
subroutine of the scatter search phase, operating on the solutions in the collection.
Those solutions represent the reference set in the basic scatter search. They are a basis
for creating new combined solutions using a combination operator. The combination
method, that we have used, randomly selects a position K to be the crossing point
from the range [1,…n]. The first K elements are copied from the one reference point
while the second part is copied from the second reference point to create the new trial
solution. After having built new combined solutions via the combination method
cited above, the best solution is returned to TS to serve as an initial starting point
which may be enhanced after resetting the tabu list. The algorithm terminates after a
certain number of iterations.

4.1 A Tabu Scatter Search Outline

Step 1. Initialization
Set tabu scatter search(TS+SS)parameters
//iter is the current iteration of TS+SS process,
//maxiter is the maximum number of iterations of TS+SS
//iter1 is the current iteration of TS process,
// iter

TS
is the maximum number of iterations of TS, //iter

Ss

is the number of iteration in which the scatter search
(SS)is called, // TL
is the tabu list,
// S* is the best solution with the minimum F* corresponds
to S*, F* objective function value that is F*=F(S*),
- Generate an arbitrary solution S; -
Evaluate F (S); S*= S; F* = F; iter=0; iter1 = 0;

Step 2. Iteration
 While (iter < maxiter) do
 begin
 While (iter1 < iter

TS
 and iter < maxiter) do

 begin
 - iter = iter + 1; iter1 = iter1 +1;

- Apply a basic TS process;/* iteratively execute
 iter

TS
 iterations using neighborhood operators*/

- Add the good solution found to the collection
 of elite solutions to construct the reference
 set for the next phase;

 If (iter = iter
SS
) then

 begin
 /*while performing the TS, execute an SS
 phase every iter

SS
 */

- Apply a TS process using the second move (SWAP) to
diversify the search, and add the diverse
solution to the collection;

- Generate subsets of the reference set as a basis
for creating combined solutions;

- For each subset produced, use the combination
operator to produce new solutions;

- Improve the combined solutions
 end;
 end;
 - iter1=0;
end;
end;
Step 3. Termination. Print the best solution with the best
objective value.

5 A Scatter Tabu Search

Our scatter tabu search-based evolutionary approach starts with an initial population
of solutions created using a diversification generator. The latter creates, from a seed
solution V, a collection of solutions associated with an integer h (1<h<=n). A
solution is represented by a binary chain V (n Vector). Two types of solutions V’ and
V’’ are created from the seed solution V and given as:

Type1 solutions V’[1+k*h]= 1- V[1+k*h], k=1,2,…..n/h, k<n.
Type2 solutions: V’’ are the complement of V’.

Then, each solution in the population makes tabu search to improve its fitness. After
that, a set of solutions (reference set) are selected from the current population. The
resulting reference set has B1 high quality of individuals plus B2 diverse solutions.
The reference set is a basis for creating new solutions consisting of structured
combination of subsets of the current reference set. The combination method (the
same described in the preview section) is applied to all subsets of solutions of the
current reference set. After having built new combined solutions, the combined
solution is returned to TS procedure to serve as an initial starting point which may be
enhanced. With all this components: diversification generator, reference set selection,
combination method and intensified tabu search procedure, we hope to be able to
achieve a good compromise between intensification and diversification in the search
process. The search terminates after a certain number of generations or when we
reach the optimum global.

5.2 A Scatter Tabu Search Outline

Step 1. Initialization
Set scatter tabu search parameters
//Psize is the size of the population P,
//B is the size of the reference set
//maxiter is the maximum number of generations,
// iter is the current generation,
- Call the Diversification generator to create an
 initial population P;
- Use TS to create enhanced trial solutions of P;
- Evaluate and order the solutions in P according
 to their objective function value;
- iter=0 ;

Step 2. Iteration
 While (iter < maxiter)do
 begin
 - Create the Reference Set of selections by
 choosing B1 high quality and B2 diverse
 solutions from P where B1+B2= B;
 - Subsets Generation Method
 While(continuing to maintain and update
 reference Set) do
 begin
 - For each subset produced, use the
 combination method to produce new solutions;
 - Use TS to create enhanced trial solutions;

- Update the Reference Set: If the resulting
solution improves the quality then add it to
the B1 high quality solutions and remove the
worst one else add it to the B2 solutions and
removes the low diverse one in B2;

 end;
- Build a new population P by initializing the

generation process with the reference set;
- Use TS to create enhanced new trial solutions;

 - iter= iter+1;
 end;
Step 3. Termination, print the best solution with the best
objective value.

6 A Comparative Study

The purpose of this comparative experiment is to evaluate the performance of each
one of the proposed techniques to solve MAX-SAT instances. First of all, we compare
on the table 1 the approaches regarding their principles and the operators used by each
approach. Further, we give some numerical results obtained by applying each
algorithm on MAX-SAT instances. The objective is to explore the influence of
population and combination strategies by comparing SS+TS and TS+SS. To compare
the hybrids and to explore the influence of the hybridization, we have compared
SS+TS and TS+SS with SS and TS alone. The results are given on the tables below.

6.1 Computational Results

All experiments were run on a 350 MHZ Pentium II with 128 MB RAM. All
instances have been taken from the SATLIB [11]. They are hard Benchmark
Problems. On each instance the different algorithms have been executed in order to
compute the average of the maximum number of the sum of the satisfied clauses.

The DIMACS Benchmarks
Two kinds of experimental tests have been undertaken. The goal of the first ones is
the setting of the different parameters of the TS+SS, and SS+TS algorithms like the
Tabu tenure, the number of iterations, the population size and the interaction between
the two algorithms parameters. These parameters are fixed as:

Table 1. Comparison of TS, SS, TS+SS, and SS+TS approaches

 TS SS TS+SS SS+TS
-neighbor

search
- Evolutionary
meta-heuristic

- neighbor
search
meta-heuristic

-Evolutionary
meta-heuristic

-Single
current
solution

- Population-
based

-Population-
based

- Population-based

Principles

-Interdiction
mechanism

Biological
evolution

Interdiction
mechanism

-Biological
evolution
and interdiction

Operators

 -Move
 -Tabu list
- Aspiration
 criterion

-Reference set
selection
- Structured
combination
- Improvement
local technique

- Move
- Tabu list
-Aspiration
 criterion

- Reference set
 selection
- Structured
combination
- Improvement
local technique

Solution or
Population
generation

At Random Using
diversification
generator

At Random or
using a
heuristic

Using a
diversification
generator

- TS+SS. The maximum total number of iterations was set to maxiter=1000. The
basic TS phase parameter, iterTS, was set to 100 iterations, the population size was set
to 40, the SS procedure was called every iterSS = 10 iterations. The move operator for
TS intensification phase was the variable flipping. A second move operator is used in
order to diversify the search consisting in permuting between two variables chosen at
random. This phase is executed before calling the SS subroutine, that, in order to
create a collection of best solutions including diverse and high quality solutions.
- TS. The maximum total number of iterations was set to maxiter=10000. The move
operator was the variable flipping. and tabu tenure was set to 7.
- SS+TS. The basic SS phase parameter, the maximum total number of iterations was
set to maxiter=3, the reference set was set to 10, the population size was 100, and the
TS parameter was set to 30 iterations and tabu tenure was set to 7.
- SS. is a scatter search with a simple local search as an improvement technique. The
SS parameters are: the maximum total number of iterations was set to maxiter=3, the
reference set was set to 10 and the population size was 100.
The second kind of experiments concerns MAX-SAT instances. All these instances
are encoded in DIMACS CNF format [11]. The tables below show the results
obtained by our algorithms. These columns contain the name of instance, the number
of variables, the number of clauses, the solution found by each algorithm, and the
algorithm running time in second. The results found are classed by class:

AIM class: Artificially generated random 3-SAT, defined by Kazuo Iwama, Eiji
Miyano and Yuichi Asahiro [18]. We have chosen six instances.

Table 2. Solutions quality and running time results obtained by TS, TS+SS, SS and SS+TS on
AIM instances.

Instance/
satisfiable

Var

claus
es

TS

TS
Time

TS+
SS

TS+SS
Time

SS SS
Time

SS+
TS

SS+
TS
Time

Aim50-1-1 50 80 78 21,6 79 44,8 79 9,6 79 54,8

Aim50-2-1 50 100 99 26,5 99 43,3 99 11,5 99 15,7

Aim50-3-1 50 170 169 44,3 170 12,0 167 18,9 165 25,5

Aim100--1 100 160 154 87,5 159 95,1 158 34,5 157 43.7

Aim100-2 100 200 195 105,5 199 156,1 196 46,8 195 63.6

Aim100-3 100 340 334 185,6 335 243.9 330 70,9 327 183.9

JNH class: Randomly generated instances- constant density model. The instances
have originally been contributed by John Hooker [18].

Table 3. Solutions quality and running time results obtained by TS, TS+SS, SS and SS+TS on
JNH instances.

Instance
satisfiable

Var

claus
es

TS

TS
Time

TS+
SS

TS+SS
Time

SS

SS
Time

SS+
TS

SS+TS
Time

Jnh201- yes 100 800 797 885,3 800 155,7 795 31.4 799 670.2

Jnh202- no 100 800 792 1084,2 796 896,0 795 30,6 797 777.3

Jnh203-no 100 800 798 1159,0 796 1135,1 790 31,3 794 753.7

Jnh204-yes 100 800 796 707,7 798 728,7 796 28,7 797 821.1

Jnh205-yes 100 800 800 697,3 799 894,1 794 34,5 797 802,2

Jnh206-no 100 800 799 701,1 797 750,2 794 30,4 796 821.1

Jnh207-yes 100 800 797 701,4 797 841,8 793 28,3 796 831,4

Jnh208-no 100 800 797 700,7 794 761,1 795 34,2 796 789.1

Jnh209-yes 100 800 797 697,8 797 797,8 794 27,8 796 748.0

Jnh210-yes 100 800 800 699,0 800 83,2 795 28,6 797 767.6

Parity8 class: Instance arises from the problem of learning the parity function.
Defined by James Crawford (jc@research.att.com). All the instances are satisfiable by
construction [18].

The results obtained by the different approaches are acceptable (we have reached the
optimum for some instances in reasonable time). In many cases (Jnh 201, Jnh 210,
par8-1-c for example), the tabu scatter search (TS+SS) performs the other approaches
in solving such instances. In some case (Jnh 205, for example) a TS alone performs
the others. Also, for some benchmarks, the SS alone performs the SS+TS which
means that the choice of adequate parameters for a meta-heuristic in solving a given

benchmark is a difficult operation and the hybridization in some situation is not very
interesting. However, for the most benchmarks the hybridization improve the quality
of solutions and gives a good result. So, according to our results, we can see that, in
general, when SS is incorporated in TS (TS+SS), the solutions space is better
searched. When intensified improvement tabu search and diversified components are
incorporated in SS (SS+TS), the solutions space is better searched but the process
search takes more time to find a solution. We precise, that the role of a tabu search
technique in scatter search is to locate the solution more efficiently.

Table 4. Solutions quality and running time results obtained by TS, TS+SS, SS and SS+TS on
parity8 instances.

Instance

Var

claus
es

TS TS
Time

TS+
SS

TS+SS
Time

SS SS
Time

SS+
TS

SS+TS
Time

Par8-1 350 1149 1115 1768,1 1126 986,7 1141 76,7 1141 303,94

Par8-1-c 64 254 250 68,9 254 10,9 248 4,1 245 121.12

Par8-2 350 1157 1114 1813,6 1137 937,9 1146 76,0 1146 401,99

Par8-2-c 68 270 267 78,9 267 137,7 263 5,13 260 99,17

Par8-3 350 1171 1127 1850,6 1154 1131,0 1162 72,8 1162 536.33

Par8-3-c 75 298 296 96,2 294 971,4 291 11,8 289 117.23

Par8-4 350 1155 1105 1816,9 1154 1351 1149 70,9 1149 278.26

Par8-4-c 67 266 261 74,5 264 141,2 260 4,8 260 91,06

Par8-5 350 1171 1110 1842,7 1164 1581.1 1163 74,8 1163 584.16

Par8-5-c 75 298 293 95,9 294 157,0 290 7,2 290 119,91

7 Conclusion and Perspectives

In this paper, we have presented, at first, the single–oriented meta-heuristic called
tabu search. We have proposed to hybridize it with a scatter search evolutionary
algorithm.. Then, we have presented a scatter tabu search approach. The proposed
approaches have been implemented for solving MAX-SAT hard instances. Our
objective is to explore the influence of both population and combination strategies on
the ability of generating high quality solutions in single solution-oriented approaches
and vice versa. We have shown that the impact of a population strategy on a single-
oriented approach is like the import of a local search in a population- based approach.
After an intensified experimentation, we conclude that the tabu search (TS) can be
considered as a powerful procedure capable to organize and to direct operations of
subordinate methods. We plan to improve our framework by implementing a parallel
environment including the two approaches.

References

1. D.Boughaci H.Drias “Solving Weighted Max-Sat Optimization Problems Using a Taboo
Scatter Search Meta-heuristic”. In Proceedings of ACM Sac 2004, pp35-36, 2004.

2. D.Boughaci, H.Drias. ”PTS: A Population-based Tabu Search for the Maximum
Satisfiability Problems”. In Proceedings of the 2 IEEE GCC conferences, pp 622-625,
2004.

3. D.Boughaci, Drias H and Benhamou B. “Solving Max-Sat Problems Using a memetic
evolutionary Meta-heuristic”. In Proceedings of 2004 IEEE CIS, pp 480-484, 2004.

4. S.Cook . “The Complexity of Theorem Proving Procedures”. In Proceedings of the
3rdAnnual ACM Symposium on the Theory of Computing, 1971.

5. M.Davis, G. Putnam and D.Loveland. "A machine program for theorem proving".
Communications of the ACM, 394-397, Jul 1962.

6. H.Drias. “Scatter search with walk strategy for solving hard Max-W-Sat problems”. In
Proceedings of IEA- AIE2001. Lecture Notes in Artificial Intelligence, LNAI-2070,
Springer-Verlag, Boudapest, pp 35-44, 2001.

7. J.Frank, “A study of genetic algorithms to find approximate solutions to hard 3CNF
problems”. In Proceedings of Golden West International Conference on Artificial
Intelligence,1994.

8. MR.Garey, S.Johnson. “Computer and intractability, a guide to the theory of NP-
Completeness, Freeman company. Sanfranscsco, 1978.

9. F. Glover, "Future paths for integer programming and links to Artificial intelligence",
Operational Research, Vol 31, 1986.

10. P.Hansen P; B.Jaumard. “Algorithms for the Maximum Satisfiability”. Journal of
Computingm 44- pp 279-303, 1990.

11. H. H. Hoos and T. Stutzle. SATLIB: An online resource for research on SAT. In I. Gent,
H. van Maaren, and T. Walsh, editors, SAT2000: Highlights of Satisfiability Research in
the year 2000, Frontiers in Artificial Intelligence and Applications, pp 283–292. Kluwer
Academic, 2000.

12. M.Laguna, F.Glover “Scatter Search”, Graduate school of business, University of
Colorado. Boulder, 1999.

13. CMLi and. Anbulagan, “Heuristic based on unit propagation for satisfiability”. In
Proceedings of CP 97, springer-Verlag, LNCS 1330, pp 342-356, Austria, 1997.

14. B.Mazure, L.Sais and E.Greroire,.” A Tabu search for Sat”. In Proceedings of AAAI 1997.
15. PM.Pardalos, L.Pitsoulis and MGC. Resende. “A Parallel GRASP for MAX-SAT

Problems. PARA96 Workshop on Applied Parallel Computing in Industrial Problems and
Optimization”, Lynghy. Denmark August 18-21, 1996.

16. B.Selman , H. .Kautz and B.Cohen . “Local Search Strategies for Satisfiability Testing”.
Presented at the second DIMACS Challenge on Cliques, Coloring, and Satisfiability,
October 1993.

17. Taillard , "Parallel Tabu Search Techniques for Job Shop Scheduling Problem". ORSA
Journal on Computing, 6:108-117, 1994.

18. http://www.satlib.org.

Complete Instantiation Strategy for Approximate
Solution of TCSP

Priti Chandra, Arun K. Pujari

A I Lab, University of Hyderabad, India
priti_murali@yahoo.com

Abstract. Interval algebra(IA) based temporal constraint satisfaction problems
(TCSPs) are useful in formulating diverse problems. The usual approach to
solve IA networks is based on partial instantiation strategy - backtrack search
for exact solution. To the best of our knowledge, determining approximate so-
lution for TCSPs is not addressed so far. In this paper we propose a new com-
plete instantiation strategy based on a complete algorithm to determine an ap-
proximate solution of IA networks. We identify a property of constraints called
nastiness that disturbs monotonic nature of entropy of a constraint. We go be-
yond the identification of nasty constraints to pin-point the singleton to restore
normal behaviour of entropy. On termination, the algorithm guarantees either
an exact or an approximate solution depending upon the number of constraints
the solution violates. We demonstrate experimentally that solution to general
IA networks can be efficiently obtained in time polynomial in the size of the
network with the success rate of 95% contrary to exponential exact algorithm.

Keywords: Constraint satisfaction problem, Approximation algorithm, Interval alge-
bra

1 Introduction

Constraint Satisfaction Problems (CSP) are in general NP-hard class [6]. On the
other hand, CSPs have numerous applications in almost all branches of engineering.
There have been several attempts to devise solution techniques for CSPs. One ap-
proach is to characterize tractable subclasses and to provide polynomial-time algo-
rithm for solving such instances. Another approach is to devise good heuristics and
search strategies. In order to understand the distribution of hard instances, there have
also been studies on identifying values of critical parameters which lie between the
easy instances of under-constrained and of over-constrained instances. In this paper,
we attempt to characterize the hardness of problem instances in a different manner.
One wonders whether there are certain nasty constraints in an instance of CSP that is
possibly the reason for hardness. And if so is the case, this paves the way to devise
approximation scheme to solve hard instances by settling these nasty constraints. The
efficiency of such an approximation method lies in settling very small number of
nasty constraints to obtain a solution in polynomial time.

In this paper we study this aspect in the context of qualitative temporal CSP,
namely Allen’s framework [1] IA. We characterize a reason for late solution for prob-

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 55-64

lems due to presence of nasty constraints. The major contribution of this paper can be
highlighted as follows.

In this paper, we introduce a new polynomial time complete method for determin-
ing an approximate solution of IA network. We start with a path consistent IA net-
work. An iterative transitive closure algorithm such as weighted path consistency
assigns highest weight to an atomic relation in a label that has maximum likelihood to
be a feasible relation. Intuitively, when the highest weight relation on the edge agrees
with the relation with highest weight in the constraint computed by averaging along
all paths, this relation is the best possible candidate feasible relation in the constraint.
A conflict occurs when the highest weight relation is not the same as that from the
paths. This includes following two possibilities: (a) Highest weight relation on the
edge is present in the averaged constraint, but with a lower weight, (b) Highest
weight relation on the edge is not present at all in the averaged constraint. Following
our intuition, in order to forcefully make the two agree, either we raise the lower
weight of an existing relation to become the highest weight or we introduce a new
atomic relation with highest weight. We term the constraint that exhibit the property
of introducing new singletons as highest weight relation to resolve the conflict as
nasty constraint. This adjustment of weights helps us to reduce the conflicts as and
when they appear in an iteration. In case of conflicts, the solution may or may not
violate any constraint. This helps in computing an approximate and early solution for
hard instances. We prove that presence of nasty constraints in hard instances is re-
sponsible for preventing entropy of constraint from decreasing monotonically. Intro-
ducing the required singletons, restores the monotonic decrease in the subsequent
iterations. Experiments reveal this method solves general IA networks by violation of
small fraction of constraints.

In Section 2, we present IA framework and related work. In Section 3, we summa-
rize weighted path consistency. In Section 4, we introduce the concept of entropy for
weighted IA network with preliminary experiment. In Section 5, we propose that
nasty constraints reflect the hardness of any given problem instance in IA with theo-
retical justification in Section 6, which contains the main result of this paper, a poly-
nomial time complete algorithm for approximate solution of hard TCSP. We report
experimental analysis in Section 7. Section 8 contains conclusions.

2 Interval Algebra and Related work

IA defines thirteen atomic relations that can hold between any two time intervals,
namely before(b), meet(m), ovelap(o), start(s), during(d), finished-by(fi), equal(eq),
finish(f), contain(di), started-by(si), overlapped-by(oi), meet-by(mi) and after(bi) [1].
In order to represent indefinite information, the relation between two intervals is a
disjunction of the atomic relations. Reasoning for the complete interval algebra is
known to be NP-hard [22]. Traditional solution techniques for temporal and spatial
domains are either based on complete[8, 11, 18, 20] or partial instantiation strate-
gies[21]. So far there is no complete method based on complete instantiation strategy
for approximate solutions for qualitative TCSPs.

Research in phase transition is investigated [9, 7, 3, 5, 4] to study instance hard-
ness. In the context of IA network, it is not possible to have any estimate of number
of solutions. So far we roughly know the hard instances exist for a combination of
parameters. The entropy based analysis of nasty constraints looks to be promising
enough to open up a new study in this direction for qualitative CSPs. Basically to
study a discrete problem consisting of only disjunctions, we are translating it to a
continuous domain by adapting a weighted formalism.

3 Weighted path consistency

In this paper, we use weighted path consistency algorithm as proposed in [13], [2]. In
a weighted IA network W(N) each constraint is represented as a 13-dimensional
weight vector Wij R13 such that 0 Wij

m 1, 1 m 13, Wij
m = 1. Wij

m denotes
the weight of the atomic relation IAm in the constraint between variables i and j. The
value 0 for Wij

m implies IAm is absent in the disjunction. We call each Wij as weighted
constraint. Given an IA network N, we obtain the corresponding weighted network
by assigning equal weights to all the atomic relations present in a constraint. We
represent the IA-composition table [6] as a 3-dimensional binary matrix M, such that
Mijm = 1 if and only if the atomic relation IAm belongs to the composition of the
atomic relations IAi and IAj. The composition of two weighted relations Wik and Wkj

resulting in a relation Wij(k) is denoted as Wik Wkj. The intersection of two weighted
relations Wij and Vij is denoted as Uij = Wij Vij, defined as follows [13]:

.131,)(m
WWM

WWM
kW

m u v

kj
v

ik
uuvm

u v

kj
v

ik
uuvm

ij
m

 131, m
VW

VWU

m

ij
m

ij
m

ij
m

ij
mij

m

We follow a slightly different approach for computing the averaged constraint
along the paths. For each edge, first we compute the non-zero normalized average of
all vectors that are computed by path-wise composition. This averaged vector is inter-
sected with the edge vector followed by normalization. We use intersection operator
only once which reduces numerical computations. The weighted path consistency
algorithm, unlike the conventional path consistency, modifies only the weights of
constraints. The atomic relations with higher weights are more favorable to be the
feasible ones, whereas those with smaller weights are less likely to participate in a
solution. There will be no occasion when the weight values in the vectors will stop
changing unless it is a network only with singleton labels(trivial case).

4 Entropy of IA network

In this section, we introduce the concept of entropy for IA network in the context of
weighted formalism. In [14, 15, 16], the three properties of measures on entropy
given in [19] are generalized. The Renyi’s quadratic entropy (RQE) is given as

2)(log ij
mm W . In the context of minimizing entropy, for the sake of convenience,

log in the above expression is normally dropped. For the present study, we loosely
define entropy to be without log [23].

Definition 1: Entropy of a weighted constraint Wij is defined as follows
110)(2 ij

m
ij

mm
ij

m
ij
w WandWwhereWE

Definition 2: Entropy of a weighted network is defined as follows

ij

ij
wN EE

The least entropy of a constraint corresponds to a singleton relation and the highest
entropy is when it has non-atomic relations with equal weights. Path consistency
algorithm indeed prevents the entropy of the constraint network from increasing.

Theorem 1: For a given network N, enforcing path consistency does not increase EN .

 We illustrate this with the help of a simplex triangle (Figure 1) for a constraint with a
maximum of three atomic relations. The three vertices C, D and E are the lowest
entropy points that correspond to the three possible singleton labels for the constraint.
The centre A corresponds to the highest entropy corresponding to equal weights for
the three relations. The contours represent states with equal entropy. The entropy
state at an edge indicates a conflict between the two singleton labels.

Figure 1. Simplex Triangle

A

B

C

E D
0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50
constraint tightness d

no
. o

f n
as

ty
 c

on
st

ra
in

ts

n = 10
n = 20
n = 30
n = 40
n = 50

Figure 2. No. of constraints with fluctuating entropy for
M(n,d,7) for known consistent problems.

In the conventional path consistency, we move from A to C in one step or from A
to B and then possibly to C. In the event of a solution, the search ends at a vertex else
it stops at either A or at B. Ideally, any search technique should choose a descending
path from A to one of the vertices, say D (Figure 1). We have experimented initially
with convex IA networks. For our experimental study, we generate random instances
based on three parameters, namely network size(n), constraint tightness(d) and label
size(t) [12], [13]. We experimented with 200 instances for each value of n in the
range [10,100]. There was not a single instance out of randomly generated 3800 con-
vex problem instances with any fluctuation in the entropy. We repeat the same ex-
periment for general IA networks that are known to be consistent. We find that unlike
the convex case, the entropy values of some constraints increase after an initial de-
crease, but again continue to decrease until stabilization i.e non-monotonic behaviour.
Thus for convex network, the entropy value for every edge takes a descending path
from the centre of the simplex to a boundary (Figure 1), a monotonic behaviour. On
the other hand, the trajectory of entropy value of any edge in a non-convex network

need not be a descending path but a longer trajectory path. The search begins at the
centre towards a vertex, but moves along the periphery of a contour with smaller
entropy.

The number of constraints with fluctuations in entropy is very high for the problem
instances in the hard region [12]. Figure 2 depicts the number of such constraints in
instances with t = 7, n in the range [10,50] and d in [10, 50]. The peaks in the graphs
(Figure 2) are the regions of hard instances (one to one correspondence of peaks is
not possible due to the different model for generating problem instances used in this
study). This has motivated us to study the behaviour of entropy in order to identify
the cases when entropy increases. This study narrows down to basic fundamentals of
multiplication of two vectors. The difference between entropy of a pair of vectors
consisting of same number of non-zero entries, depends on the relative order of their
highest value. When the number of non-zero entries in the two vectors is not same,
then one cannot conclude clearly as which of the two will have a higher value of
entropy. It depends on the relative distribution of the values within the vector. We
formalize these observations as following results:

Theorem 2: Given two normalized vectors U and V with same no. of non-zero com-
ponents, i.e. nz(U) = nz(V), E(U) E(V) iff max(U) max(V), where max(U)
is the component with highest value.

Theorem 3: Given two normalized vectors U and V such that nz(V)>nz(U), then
max(V)>max(U) is not a sufficient condition for E(V) < E(U) .

5 Nasty Constraints

In this section, we identify a new property of weighted IA constraints called nastiness
that is responsible for a difficulty in computing solution of a problem instance. Sup-
pose Wij is the weighted constraint on the edge (i,j) and W is the averaged constraint
obtained from all possible paths using the weighted composition operator as ex-
plained in section 2. Wavg is the constraint obtained by weighted intersection of Wij
and W at the end of the current iteration of weighted path consistency. We study the
impact of replacing Wij by Wavg in terms of weights of atomic relations that will in-
crease or decrease with the help of inner product of vectors.

Lemma 1: Given two weighted IA constraints U = [ui] and V = [vi], the normalization
factor = uivi will satisfy the conditions, umin umax and vmin vmax where
ui [umin, umax], vi [vmin,vmax].

Theorem 4: Wavg[argmax(Wij)]>Wij[argmax(Wij)]
 iff argmax(Wij) Whigh where p Whigh, W[p] , = uivi.

The normalization factor divides the vector W into two halves, the relations with
weights greater than normalization factor will increase if Wavg replaces Wij. In other
words, if the highest weight relation on the edge is among the higher weight relations

in the averaged constraint along the paths, then its weight is guaranteed to increase
further. Contrary to this, when the highest weight relation on the edge is not the high-
est weight relation in the averaged constraint, a conflict takes place. Whether this
conflict will lead to a decrease in the weight of the highest weight relation on the
edge by replacing Wij by Wavg, is an obvious consequence of the above theorem. We
formalize this condition as the following lemma.

Lemma 2: If argmax(Wij) Whigh, then Wavg[argmax(Wij)] < Wij[argmax(Wij)].

Our premise is that as the weighted path consistency algorithm iterates, the weights
in the network are adjusted based on the influences of the weights of the edges along
the paths. Thus in an ideal situation (for eg a convex network), above lemma should
not be satisfied at all. There are two possibilities here, the highest weight relation may
exist in the averaged constraint with a lower weight or may be absent i.e. a weight of
zero. In the first case, we solve the conflict by forcing the weight in the constraint
resulting after intersection to be the highest value such that it becomes the highest
weight relation for the next iteration. In the second case, as mentioned in the earlier
section, the entropy of the constraint may or may not increase. In the latter case, a
new atomic relation is forced to dominate other weights in the next iteration. For the
cases when the next iteration highest weight value is less than the highest weight
value in the current iteration, entropy will increase otherwise it will continue to de-
crease. We formalize these observations to introduce a concept of nasty constraints
for IA networks.

Definition 3: A weighted IA constraint is said to be a nasty constraint if it satisfies
either of the following conditions:
 (a) If argmax(Wij) Whigh and atomic relation at (argmax(W)) Rij.
 (b) If argmax(Wij) Whigh and atomic relation at (argmax(W)) Rij.
 and Wavg[argmax(W)] < Wij[argmax(Wij)]

where Rij : constraint on edge (i,j) in the current iteration of weighted path consistency.

By the study of entropy of weighted IA constraints in the previous section, it is
obvious that by the very definition of nasty constraint, entropy of a nasty constraint
will increase when either of the above two conditions are satisfied. We formalize this
consequence as following result.

Theorem 5: Entropy of a nasty constraint does not decrease monotonically over itera-
tions of weighted path consistency.

A vector that is initially generated with all the components with equal values, this
will correspond to maximum entropy of the vector. If the same vector is subjected to
some operations in an iterative manner such that the value of one of the components
goes on dominating all others, the entropy of this vector will go on decreasing assum-
ing number of non-zero components do not change. A stage will come, beyond which
entropy cannot decrease further and hence stabilizes. We exploit this observation in
the next section as the termination condition of the algorithm proposed in this paper.

6 Approximate solution for IA networks

In this section, we propose a method to determine an approximate solution for IA
networks based on our foregoing analyses. We propose an algorithm to identify nasty
constraints in weighted IA networks and settle these to compute an early solution as
shown in the pseudocode in Table 3.
compute_approx_solution(W(N))
 Output: A singleton network that is a solution

while no solution weighted_path_consistency_iteration(W(N)) enddo
weighted_path_consistency_iteration(W(N))

Wij k = 1 to n, such that k i and k j
 W(k) = Wik Wkj
 W normalized non-zero average over W(k)

 = w[p]wij[p], p = 1 to 13
 Wavg[i,j] W Wij

{where and are weighted composition and intersection operators}
 partition W such that W=Whigh Wlow, Whigh Wlow= ,

p Whigh, W[p] , q Wlow, W[q]<
if (argmax(Wij) Whigh)

 if (IA(argmax(Wij)) Rij) mark (i,j): nasty constraint endif
 if (IA(argmax(Wij)) Rij) and (Wavg[argmax(Wij)]<Wij[argmax(Wij)])

mark (i,j) as a nasty constraint
 endif
 Wavg[argmax(W)] = 1.0
 renormalize Wavg
endif
Replace (i,j) Wij Wavg(ij)

(i,j) ij atomic relation at argmax(W)
 if is path consistent then solution found
 (i,j) if ij Cij then constraint is violated endif
 where Cij is the disjunctive constraint in the IA network N

endif
Table 3. approximate solution algorithm.

Clearly compute_approx_solution is of O(n3T) complexity, if we assume that T
number of iterations of weighted path consistency are executed to compute a solution.
As per our foregoing analyses in the previous section, this algorithm captures those
constraints as nasty constraints for which entropy fluctuates. It is observed that there
are some more constraints that are not the nasty constraints, but still the highest
weight relation along the paths is forced to become highest on the edge. These are
those constraints for which a conflict takes place and the highest on the edge is not
absent along the path, but has smaller weight. We term all the constraints (including
nasty constraints) where any time this type of adjustment of weights takes place as
approximated constraints(AC). The algorithm starts with the state of highest entropy
for all the constraints, that corresponds to the starting point when all the atomic rela-
tions in a constraint are assigned equal weights. As the weighted path consistency
algorithm iterates, compute_approx_solution ensures that entropy of every constraint

to decrease monotonically. In the later iterations, weight of an atomic relation domi-
nates others, leading to the state of least entropy beyond which a bounded variable
like entropy (with a minimum value of -1) cannot decrease. Over iterations of
weighted path consistency, our algorithm reduces the number of inconsistent triplets
in the singleton network by forcing the highest weight relation on the edge to agree
with the one with maximum support along the paths. We claim that on termination, it
will compute a solution. The solution may be an exact one for easy instances and an
approximate one for hard instances. Thus our method is a complete method for de-
termining approximate solution for IA networks.

Theorem 6: compute_approx_solution is a complete algorithm.

7 Experimental analysis

The objective of the experimental analysis is essentially to confirm our theoretical
analyses as discussed in the previous sections. Realizing the algorithm is complete,
we attempt to determine the instances that are known to be consistent and completely
cover both easy as well as hard problem regions of IA networks. The experiments are
conducted on Windows based PC with 2GHz clock speed, 512 RAM and Visual C++
environment. We have experimented with 480 instances of known consistent general
IA networks with n in the range [10,60]. The graphs shown in Figure 4 indicate the
performance of our method.

The model for instance generation is same as that proposed in [13]. The iteration at
which a consistent scenario is obtained, (s) is noted and average of these is taken for
each combination of n and d. This approach gives an empirical estimate of average
number of iterations required to get a solution for general IA networks. We make use
of statistical regression models to analyze empirical results at arrive at the best-fitting
curve. Figure 4(a) shows that the solution iteration depends on the constraint tight-
ness. Figures 4(b) explains that higher the number of approximated constraints higher
is the number of violated constraints. Our method is able to solve 100% of the prob-
lems for n in the range [10,40]. Two instances for 40 nodes and five problems in 60
nodes set of problems are left without a solution, i.e. 95% of success rate. With ex-
perience, we say that this 5% of failure is due to numerical errors.

Any comparison of this method with backtrack algorithm will not be in place. We
feel that comparison of two methods that give different types of solutions does not
help us in this context. However, an outright advantage of our method can be simply
seen by the fact that for 50 and 60 node problems, backtrack is known to take expo-
nentially high computation time, where as our method gives the solution in a maxi-
mum computation time of 80 minutes, which is equivalent to a maximum of 1000
iterations of weighted path consistency algorithm. This method is able to solve even
hard problems in reasonable time despite a large number of nasty constraints.

10 20 30 40 50 60
0

20

40

60

80

100

node size n

so
lu

tio
n

ite
ra

tio
n

 s

10 20 30 40 50 60
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

node size n

%
 A

pp
ro

xi
m

at
ed

 c
on

st
ra

in
ts

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

node size n

%
 V

io
la

te
d

co
ns

tra
in

ts

(a) (b) (c)
Figures 4. Linear cubic regression models.
(a) s = 0.0136 + 0.7529n - 2.6n2
(b) AC = 3.83 + 0.7475n + 0.0480n2 - 0.0011n3

(c) VC = 0.73 + 0.16n - 0.00594n2 + 0.0001n3

8 Conclusions

The present work introduces a new paradigm for TCSP using entropy-based interpre-
tation of IA as against the known method backtrack. We provide an insight into the
well-known fact that convex networks are easy to solve. General IA problems with
relations not belonging to any of the tractable classes are solved with help of a com-
plete method. We provide here a linear time algorithm that captures the hardness of
the problem in terms of nasty constraints, exploiting structure of individual problems.
Our algorithm computes approximate solution for hard problems in polynomial time
with exact solution a special case. In the process of handling the conflicts, the link
with the original problem is not lost. It is possible for an interactive choice of nasty
constraints to be settled, that may be crucial to the problem. It is possible to keep
track of iteration-wise resolved atomic relations. User can analyze the impact of
avoiding or choosing a new atomic relation. We propose to extend this study to pro-
pose PTAS with approximation bounds for general IA networks and overconstrained
problems.

References
1. Allen: Maintaining knowledge about temporal intervals. Communication of the

ACM, 26(11): 832-843, 1983.
2. Bhavani, S. D. and Pujari, A. K.: EVIA-Evidential Interval Algebra and Heuris-

tic backtrack-free algorithm, Constraints, 9 (3), 2004, 193.
3. Boukeas, G., Halasis, G. Zissimopoulos, V. and Stamatopoulos, P.: Measures of

Intrinsic Hardness for Constraint Satisfaction Problem Instances. LNCS 2932,
184-195, 2004.

4. Clark, D.A., Frank, J. Gent, I.P., Macintyre, E., Tomov, N. and Walsh, T.: Local
Search and the Number of Solutions. Proc. of CP-96, Springer(1996), 119-133.

5. Crutchfield, J. Feldman, D.: Regularities Unseen, Randomness Observed: Levels
of Entropy Convergence. Chaos 13(2003) 25-54.

6. Dechter: Constraint Processing. Morgan Kaufmann Publishers, San Francisco,
USA, 2003.

7. Gent, I.P., MacIntyre, E., Prosser, P., Walsh, T.: The Constrainedness of Search.
In: AAAI/IAAI. Volume 1. (1996) 246-252.

8. Gerevini, A. and Renz, J. Combining topological and qualitative size constraints
for spatial reasoning. Proc. of the 4th International Conference on Principles and
Practice of Constraint Programming 1998, Pisa, Italy.

9. Hogg, T., Huberman, B. Williams, C.: Phase Transitions and the Search Problem.
Artificial Intelligence 81 (1996) 1-15.

10. Larrosa, J., and Schiex, T.: In the quest of the best form of local consistency for
weighted CSP. In Proc. of the 18th IJCAI (Acapulco, Mexico, 2003), 239–244.

11. Ligozat, G.: A new proof of tractability for ORD-Horn relations. Proceedings of
AAAI-96, 395-401.

12. Nebel: Solving hard qualitative temporal reasoning problems: Evaluating the
efficiency of using the ORD-Horn class. Constraints, 1(3):175-190, 1997.

13. Pujari, A.K., and Adilakshmi, T.: A Novel Heuristic to Solve IA Network by
Convex Approximation and Weights. In Proc. of the 8th PRICAI (Auckland,
New Zealand, August 2004), 154-163.

14. R´enyi, A.: On measures of entropy and information. Selected Papers of Alfred
R´enyi, 2(180):565–580, 1976a.

15. 18. R´enyi, A.: On the foundations of information theory. ibid, 3(242):304–318,
1976b.

16. 19. R´enyi, A.: Some fundamental questions of information theory. ibid,
2(174):526–552, 1976c.

17. Rossi, F., Venable K. B., Khatib, L., Morris, P. and Morris, R.: Two solvers for
tractable temporal constraints with preferences. Proc. AAAI 2002 Workshop on
preferences in AI and CP Edmonton, Canada.

18. Selman, B., Levesque, H. and Mitchell, D.: A new method for solving hard satis-
fiability problems. In Proceedings of the Tenth National Conference on Artificial
Intelligence, 440-446, 1992.

19. Shannon, C. E. and Weaver, W.: The Mathematical Theory of Communication.
Univ of Illinois Pr., 1963. ISBN: 0–252–72548–4.

20. Thornton, J., Beaumont, M., Sattar, A. and Maher, M. J.: Applying Local Search
to Temporal Reasoning. TIME, 2002: 94-99.

21. van Beek and Manchak 1996: The design and experimental analysis of algo-
rithms for temporal reasoning. JAIR 4:1-18.

22. Vilain, M. and Kautz, H.: Constraint propagation algorithms for temporal reason-
ing. In Proc. Fifth National conference on Artificial Intelligence. 377-382, Phila-
delphia, 1986.

23. Zitnick III, C. L.: Computing Conditional Probabilities in Large Domains by
Maximizing R´enyi’s Quadratic Entropy. PhD Thesis: CMU-RI-TR-03-20,
2003.

Graphplan Based Conformant Planning with Limited
Quantification

Alan Carlin1, James G. Schmolze1, Tamara Babaian 2

1 Department of Electrical Eng. And Computer Science
Tufts University, Medford, MA 02155 USA

{schmolze, acarli04}@cs.tufts.edu
2 Department of Computer Information Systems
Bentley College, Waltham, MA 02452 USA

tbabaian@bentley.edu

Abstract. Conformant planners solve problems with a correct but incomplete
description of the initial state, by finding plans that are valid for all possible
assignments of the unknown atoms. Most conformant planners, however, do
not handle universal quantification, which is a problem when the set of all
domain objects is unknown or very large, and thus can not be enumerated. This
paper introduces PSIGRAPH, a conformant planner that operates with
universally quantified statements in the initial and goal states, as well as in the
action preconditions. Thus, PSIGRAPH does not need to know the complete
set of domain objects. We present the algorithm and the results of its
experimental evaluation, showing that PSIGRAPH is competitive with other
conformant planners. PSIGRAPH is based on Graphplan, but differs from
previous approaches such as Conformant Graphplan in that it does not create
multiple plan graphs.

1 Introduction

Graphplan [3] is a well-known and well-studied AI Planning algorithm. From a layer
of initial conditions, it iteratively generates new layers of subsequent conditions that
can result from actions, detects whether these subsequent conditions entails the goal,
and if so, evaluates whether the path of actions that lead from the initial conditions to
the goal is a valid solution. Graphplan repeats these three steps, extending the graph
until a valid solution is found. A large amount of prior work has addressed the
optimization of the closed-world Graphplan, as summarized in [14].

The solution extraction portion of Graphplan has proven to be the most
computationally intensive, so optimizations have included memoizing unworkable
solutions, as presented in the original Graphplan paper, forward checking to detect
invalid solutions in advance, dynamic variable ordering [2], and formulating solution
extraction as a constraint satisfaction problem (CSP). Variations on the latter
approach [10] attempt to construct minimized explanations of why a solution is
unworkable in the form of an unworkable set of propositions at a given time step,
which we refer to as anogood. These nogoods are stored, and future solutions are
checked via an efficient algorithm [9] to detect whether they have a nogood as a

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 65-76

subset. If so, the solution is not explored further. Moreover, each nogood is
regressed [10] to previous layers, to take further advantage of it.

The above optimizations have been implemented in closed-world Graphplan based
planners. In closed-world planners, all propositions are assumed to be false unless
otherwise noted. There are no unknown propositions. Recent work has explored the
open-world problem, where some propositions are unknown. Conformant planners
do no sensing and attempt to produce a single plan that will work in every
contingency no matter what is unknown. Conformant Graphplan [13] is a Graphplan-
based algorithm that produces a Graphplan for each possible world. More recent
planners, including GPT [4], have expressed conformant planning as a search in a
belief space. MBP [7] uses Binary Decision Diagrams [6] to represent belief states.
CAltAlt-LUG [5] condenses multiple planning graphs into a Labeled Uncertainty
Graph to conduct the search in belief space.

However, none of the above planners handle quantified information, or information
about an infinite number of items. Finzi et al [8] produced an open-world planner,
implemented as a theorem prover in the situation calculus, that could represent
statements like “For all Blocks x, x is not on top of A”, whereas the above planners
would need to make a qualitatively different statement like (Clear A). We use an
open world planning language called PSIPLAN [1] that can represent quantified
statements about negated propositions. Furthermore, PSIPLAN can add exceptions to
these statements, such as “For all Blocks x, x is not on top of A, except if x is Block
B.” Babaian and Schmolze called these statements psiforms. Exceptions to a psiform
represent unknown information. That is, given the previous statement, the state of
Block B being on top of A is unknown. PSIPOP [1] is a conformant partial order
planner based on PSIPLAN.

 This paper describes a new planner called PSIGRAPH, which implements a
Graphplan based algorithm using the PSIPLAN language, and is thus able to act as a
fast conformant planner for use in domains where quantification is needed.

In the next section, we review the original Graphplan algorithm, followed by a
description of PSIPLAN. Afterwards, we explain PSIGRAPH, which combines the
two. We then describe the methodology used in testing PSIGRAPH on the Blocks-
World and Bomb-In-Toilet -with-Clogging (BTC) domains. Finally, we evaluate the
results and draw conclusions.

2 The Closed-World Graphplan Algorithm

Graphplan constructs a layered, directed, acyclic graph. The first layer is assigned
level 0, and the nodes in even numbered layers represent ground literals. The nodes
in odd numbered layers represent operators. No literal or operator is represented
more than once in a given layer. The initial conditions are assigned to nodes in layer
0. Letting the current layer of operators be called k where initially k=1, Graphplan
repeats the following steps, increasing k by 2 each time, until it finds a solution.

• All possible operators, including maintenance operators (which simply copy a
condition from one layer to the next condition layer) are assigned to layer k.

• For each operator in level k, Graphplan checks to see whether its preconditions are
present on layer k-1. If not, the operator is removed from the graph. If so, a
directed edge is created from each precondition on level k to the operator.

• The effects of the operator are added to layer k+1, with directed edges from the
operator to these effect nodes.

• When all operators have been examined, mutexes are created between pairs of
operators that cannot co-occur. For example, a mutex would occur between two
operators whose preconditions are mutually exclusive.

• Next, mutexes are created between inconsistent pairs of conditions on level k+1.
• After all mutexes have been added, Graphplan evaluates whether layer k+1 entails

the goal. If so, it is possible that Graphplan has found a solution. In the next phase,
called Solution Extraction, Graphplan starts with the goal conditions from layer k+1
and checks to see whether there exists a set of edges from non-mutex actions that
produce them. If so, Graphplan recursively checks to see whether these actions
have non-mutex conditions which produce them. If the recursion reaches the initial
layer, which by definition has no mutexes, then Graphplan has found a solution.

3 PSIPLAN

PSIPLAN [1] is an expressive language designed for open world domains. It offers
limited quantification and tractable, complete reasoning. A database in PSIPLAN
consists of ground literals and psiforms, the latter of which express possibly
quantified negative information. Such quantification makes a database much more
compact since there are often many more false facts than true ones. For example, a
briefcase may have a pencil in it but there may be many things not in the briefcase.
Moreover, for infinite domains, or for finite domains where some objects are
unknown to the planner, quantification is essential. Consider the impossibility of
stating that there is nothing in the briefcase except a pencil if the domain is infinite, or
if the domain is finite but the planner cannot name all the objects in it. In both cases,
one cannot enumerate all ground instances of ~In(x,B) .
To state that briefcase B has nothing in it except possibly pencil P in it PSIPLAN uses
a psiform [~In(x,B) except x=P]. .Here the x is a universally quantified variable and
~In(x,B) represents that no x is “in” B. The exception x=P means that ~In(x,B) is not
necess arily true when x=P. [~In(x,B) except x=P] is equivalent to the standard first
order sentence PxBxInx =∨¬∀),(. . Combined with the atom In(P,B), it implies that
P and nothing else is in B.

Psiforms are even more general in two ways. First the main part, which is the part
before the word "except", can be a clause of negated literals. For example, [~In(x,B)
or ~Pencil(x)] states that "for all x, x is either not in B or x is not a pencil" -- i.e., there
are no pencils in B (though there might be other things in B). Second, the exceptions
can themselves be "quantified" in that a set of ground clauses can be excepted. For
example, [~InDir(x,y) or ~TexFile(x)] states that "for all x and y, either x is not in
directory y or x is not a Tex file," which is equivalent to saying that Tex files are not
in any directory. But this is odd. A more reasonable statement might be [~InDir(x,y)
or ~TexFile(x) except y=/tex], which states that Tex files are not in any directory
except possibly the directory /tex.

In some domains, one can use tricks to represent quantified information without
explicit quantification, such as the use of Clear(x) in the blocks world. But the use of
Clear depends crucially on the requirement that there is at most one block on top of
another. In the briefcase example, we cannot use a trick such as Empty(x) because a
briefcase can have 0, 1, 2 or more objects in it. We would need Empty(x), Empty1(x)
to represent that x is empty except for 1 object, Empty2(x), etc.

The reasoning algorithms for psiforms include entailment, logical difference and
logical image. Entailment is needed because we now have quantification. For
example, if our goal is that from above, namely that no block be on B, [~On(x,B) or
~Block(x)], we can satisfy this with nothing being on B, [~On(x,B)], or with nothing
being a block, [~Block(x)]. Logical difference lets us "subtract" one psiform from
another to see what is not entailed. For example, P1=[~On(x,B) or ~Block(x)]
"minus" P2=[~On(x,B) except x=A], which states that nothing is on B except possibly
A ,, yields P3=[~On(A,B) or ~Block(A)], i.e., to entail P1 using P2 we must also have
P3. Image is the complement of difference. The image of P2 on P1 is the subset of
P1 that is entailed by P2, which is P4=[~On(x,B) or ~Block(x) except x=A]. All three
types of reasoning are used in planning.

Formally, a PSIPLAN database is a set of ground literals and/or psiforms. A
psiform is P=[~P1(x) or … or ~Pm(x) except σ1, …, σn] where x is possibly a vector of
variables, M(P)=[~P1(x) or … or ~Pm(x)] is called the main form and E(P)={σ1,…,σn}
are the exceptions. Each σi is a substitution that binds a (not necessarily proper)
subset of the vector of variables, x, to constants. The meaning of a psiform P is the
conjunction of the clauses in φ(P). When P has no exceptions, φ(P) is the set of all
ground instantiations of P, i.e., φ(P)={M(P)σ | M(P)σ is a ground clause}. Otherwise,
φ(P)= (φ(M(P)) \ (φ(M(P)σ1) U … U φ(M(P)σn))) where \ is set difference.

A ground clause C1 entails another ground clause C2, written C1|=C2, if and only
if the literals in C1 are a subset of the literals in C2. A psiform P1 entails a psiform
P2, P1|=P2, if and only if every clause in φ(P2) is entailed by some clause in φ(P1).
The image of P1 onto P2, written P1> P2, is the subset of φ(P2) that is entailed by
P1. Thus φ(P1 > P2)={p | p∈φ(P2) and φ(P1)|=p}. Finally, the e-difference (i.e,
logical difference) of P2 minus P1, written P2-P1, is the subset of φ(P2) that is not
entailed by P1. Thus φ(P2-P1)={p | p∈φ(P2) and ~(φ(P1)|=p)}. (P1 > P2) and (P2-
P1) partitions φ(P2). We note that image and e-difference can be represented by a set
of psiforms, and that all three operations -- entailment, image and e-difference --
require time and space that is polynomial in the size of the database under certain
reasonable assumptions [1] which we make in this paper.

4 PSIGRAPH

We split the description of PSIGRAPH into four parts: the definition of a planning
problem, the overall algorithm, graph generation, and solution extraction.

4.1 Definition of a Planning Problem

PSIGRAPH is given the following:
• A set of initial conditions, which consists of ground literals and/or psiforms

• A set of goals, which consists of ground literals and/or psiforms.
• A set of operators, each of which consists of:

o a name, which specifies the variables in the operator structure.
o a set of preconditions, which consists of literals and/or psiforms.
o a set of effects, which consists of literals.

In the currently implemented version of PSIGRAPH, we do not allow conditional
effects and disjunctions are limited to psiforms.

The overall PSIGRAPH algorithm is in Figure 1 and is the same as the closed-
world Graphplan algorithm.

4.2 Graph Generation

The graph generation portion of PSIGRAPH is based on that of the closed-world
Graphplan in that each precondition of each operator is checked to see if it is entailed
in the previous layer. If all of the preconditions for the operator are so entailed, the
operator is retained and the effects of the operator are generated for the next layer.
Otherwise the operator is removed from the graph. However, there are three issues
presented by the use of psiforms in the PSIGRAPH domain.
(1) Preconditions may be nearly entailed by propositions.
(2) There may be more than one way to entail a precondition.
(3) Generated psiforms on the next layer may only be partially mutex with other

generated psiforms, and this will make future reasoning difficult.
We explain each of these in turn. But first, we say that a psiform P1 nearly entails
another psiform P2 if and only if the main part of P1 entails the main part of P2,
ignoring exceptions, i.e., P1 nearly entails P2 iff M(P1)|=M(P2).

Algorithm PSIGRAPH

Current-Level = Initial-Conditions; Iterations=0

Repeat
Iterations++;

Next-Level = Generate-New -Layer(Current-Level);

If Find-Plan(Next-Level) == SUCCESS
then Return(SUCCESS);

End if

Next-Level = Current-Level;

If iterations > MAX_ITERATIONS, Return(FAIL);

end Repeat

Fig. 1. The overall PSIGRAPH algorithm.

4.3 Multilinks

The first issue arises when a combination of two or more propositions from a layer
entail a precondition or goal, but neither by itself is sufficient for such entailment.
For example, let a precondition state that block B is clear of anything on top, i.e.,
[~On(x,B)], and let the previous layer include the propositions:

[~On(x,B) except x=C, x=D], ~On(C,B), ~On(D,B)

Together, these three conditions entail the precondition. In such a case, PSIGRAPH
draws a multilink between the operator and the three prop ositions. A multilink in
PSIGRAPH acts just like a link or an edge in Graphplan. It is a set of edges from one
or more propositions on layer k to an operator on layer k+1. As a plan proceeds these
edges must be followed atomically, that is, all at once or not at all. Note that the
closed-world Graphplan may be viewed as a form of PSIGRAPH where all the
multilinks have exactly one edge.

4.4 Finding the complete set of Multilinks

The second issue is that a precondition may be entailed by more than one multilink.
For PSIGRAPH to be complete, it must find all possible multilinks. Thus it
implements the function Satisfy-Goal, which returns the set of sets of propositions in
a given layer where each set, taken together, entails a given goal. It e-subtracts each
potentially helpful proposition from the goal, and recursively calls itself to satisfy the
remainder. The algorithm is in Figure 2 where \ is set subtraction and – is e-
difference.

The first argument to the recursive call is the union of the set of goals without G
and the e-difference of G minus P. The latter is the portion of G that is not entailed
by P. In general, e-difference returns a set of psiforms.

Function Satisfy-Goal (Goals, Props, Sofar)

- Goals is a set of psiforms to achieve.

- Props is the set of conditions to examine.

- Sofar is the current partial solution set.

If Goals is empty then return {Sofar}
// Return a set whose only element is the set Sofar.

else Let Result = {}

For each P in Props
For each G in Goals

If P nearly entails G

then Result=Result U
Satisfy-Goal((Goals\G) U (G-P),

 Props\P, SoFar U {P})

end inner for

end outer for

return Result

end If
end Function

Fig. 2. Satisfy-Goal

The first call for a given Goal is: Satisfy-Goal({Goal}, Props(Layer), {})

where {Goal} is a singleton set containing Goal, Props(Layer) is the set of
propositions in the Layer and {} is the empty set.

4.5 Partially Mutex

Just like Graphplan, PSIGRAPH generates all of an operator’s effects on the next
layer. For negated literals, determining mutexes between conditions on this next layer
is the same as Graphplan since all literals are ground: If A is an atom, mark as mutex
the pairs A and ~A. With psiforms, mutexes are more complicated because an atom
A might be inconsistent with only part of a psiform P, i.e., P might entail many
ground clauses where A is inconsistent with only some of them. For example,
A=On(A,B) is inconsistent with P=[~On(x,B)] but P entails many ground literals
besides the one that is inconsistent with A. We cannot mark A and P as mutex
because it is an overgeneralization and may prevent finding some solutions. Instead
we split P into two parts: P1, which represents the subset of P that directly conflicts
with A, and P2, which is the remainder of P. In the above example, we split P into
P1=[~On(A,B)] and P2=[~On(x,B) except x=A].

The above is accomplished using the image and e-difference operation described
earlier. An atom A is inconsistent with a psiform P iff P|=(~A). If not, there is no
mutex. If so, we calculate P1=([~A] > P) and P2=(P1-[~A]). Remember that P1 and
P2 are sets of psiforms, and we note that P1 must be a singleton set. If P2 is empty
then no splitting occurs because [~A] entails all of P. In this case, A and P are simply
marked mutex. If P2 is not empty, then node P is replaced by P’=(P1 U P2) in the
graph and A is marked mutex with the single psiforms in P1. P1 and P2 inherit the
uplinks from P. Their downlinks are easily recalculated from P’s downlinks.

4.6 Solution Extraction

Solution extraction of PSIGRAPH follows the algorithm of Kambhampati [10] by
using Explanation-Based Learning (EBL) and Directed-Backtracking (DDB). Several
issues that arise due to the use of psiforms in PSIGRAPH require only minor
modifications to the algorithm
(1) There may be more than one set of propositions that entails a goal or

precondition.
(2) A set of propositions may be mutex, even though there is no pairwise mutex. We

refer to these sets as nogoods.
The first issue is solved merely by following all possible multilinks backwards

during backtracking. Although this increases the search space, the EBL/DDB
algorithm is extended to mark additional sets of unreachable propositions as
memoizations of nogoods. The only difference is that in PSIGRAPH, a failed
solution could return more than one conflict set. Each conflict set is stored as a memo
and regressed. The memo sets are stored in a UB-Tree [9].

The second item above refers to disjunctive psiforms. A disjunctive psiform may
be mutex with a pair of atoms taken together, while being mutex with neither
separately. These sets are detected at graph generation time by scanning the layer for
sets of atoms each of which is mutex to a term in the disjunction. They are stored as
nogoods in the UB-tree.

5 Evaluation

PSIGRAPH was implemented in Allegro Common Lisp, and tested on the BTC
(bomb in toilet with clogging [11]) and Blocks-World domains. For the Blocks-
World domain, we generated problems using the BWStates program [12] and recoded
them in PSIGRAPH. For BTC, we rephrased the initial conditions as follows. In this
example, there is one toilet, T1, and 2 packages, P1 and P2.

[~Package(x) except x=P1, x=P2],
Package(P1), Package(P2), Toilet(T1), ~Clogged(T1)

The first proposition states that nothing is a package except possibly P1 and P2. We
also rephrased the goal.

[~Package(x) or ~Armed(x)]
i.e., every x is either not a package or not armed. The Dunk(P,T) action had
preconditions Package(P) and ~Clogged(T), and effects Clogged(T) and ~Armed(P).
The Flush(T) action had no preconditions, and effect ~Clogged(T).

We also performed experiments where it was not known whether the toilet(s) were
clogged (i.e, we removed ~Clogged(T1), etc., from the initial state), and the effect
was small. We will soon see that PSIGRAPH is not sensitive to this type of change in
the initial state. We ran our experiments on a 2.4Ghz Dell Linux workstation.
We used two different versions of PSIGRAPH. The first, PG1, performed an
exhaustive solution extraction search on each layer before failing and proceeding to
the next layer. PG1 alw ays finds an optimum parallel solution. The second, PG2,
differs from PG1 in the following ways:
• (Mod 1) All pairs of non-maintenance actions were labeled mutex.
• (Mod 2) Solution extraction failed after n nogoods were found, where n is the

number of operators in the domain, unless the number of planning layers was at a
theoretical maximum (in which case solution extraction failed). The last solution
extraction performed before PSIGRAPH gives up is always a complete search.

• (Mod 3) Solution extraction was only attempted every fifth layer.
(Mod 1) means that PG2 finds only linear plans. Problem BTC(40,6) requires 13

time-steps under PG1 and 81 timesteps under PG2, although both have the same
number of non-maintenance operators.

(Mod 2) prevent s the planner from getting bogged down in solution extractions that
are likely to fail. As a result, it may return non-optimal plans. But as long as the last
attempt is a full solution extraction, it will never fail to solve a plan because of (Mod
2). This is because solution extraction works just fine on overly long graphs. BTC
was not assigned a theoretical maximum, but the Blocks-World domain has a
maximum number of plan steps of 2 times the number of blocks

(Mod 3) has the same intention as (Mod 2) .
Table 1 shows our results in BTC 1-toilet problems. BTC 1-toilet results have been

published for other conformant planners, and a summary in [5] includes results for
CAltAlt-Lug [5], HSCP, GPT [4], and CGP [13]. The summary shows HSCP as the
fastest timing on this domain, taking 98 seconds for the 20 package problem, 674
seconds for 40 packages, and 5100 seconds for 60 packages. We note that these
planners allow conditional effects but not quantified information, whereas
PSIGRAPH does not allow conditional effects, but does allow limited quantified
information. The effect is that the difference in expressiveness helps make BTC an
easier problem for PSIGRAPH, as the DUNK action has no preconditions that need to
be explored.

Table 2 compares the BTC 10-package 3-toilet problem (BTC(10,3)) and
BTC(40,6), where the possible clogging of all toilets was unknown, to published
results of WSPDF [8] , who used a 333 MHz Sun Sparc 10 Ultra workstation. Finzi et
al use a domain dependant BadSituations marker to limit their search space. In
WSPDF, a BadSituation occurs when a toilet is flushed twice without an intervening
dunk, when a package is dunked when there is an undunked package lower in
number, and when a toilet is flushed when there is an unflushed toilet lower in
number. We did not use the

Table 1. Timings of various planners on various domains. Times are in seconds. PSIGRAPH
was run 5 times on a 2.4 Ghz Pentium processor. All other results come from [5] on a 2.66 Ghz
Pentium 4. Times are in format (x/y), x is in seconds, y is in plan steps. All plans in the same
row produce the same number of plan steps, unless otherwise noted. * indicates no solution

Domain PG1 PG2 Caltalt
Lug

HSBP CGP

BTC
(20,1)

2.46/39 1.7/39 651 98 465/3

(40,1) * 14.4/79 8009 674 *
(60,1) * 80.2/119 38393 5100 *

Table 2. Timings in the BTC domain for multiple toilets with high uncertainty. PG1 and

PG2 were run using a 2.4 Ghz Pentium 4 processor. WSPDF is reported from [8] on a
333 Mhz UltraSparc 10. * indicates no solution.

Domain PG1 PG2 WSPDF
BTC(10,3) 12.5/7 1.2/19 .32/20
BTC(40,6) * 80.3/79 114/80

Table 3 . Averaged results of running PSIGRAPH on 10 random examples in the BW

domain. Domains are of the form BW(a,b) where a is the number of blocks and b is

the number of blocks whose location is unknown. Results are of the form x(y)/z,w here
x is mean time in seconds, y is mean plan steps,. And z is the maximum number of

propositions found in a single layer. ‘*’ indicates a trial had no solution found after 10

minutes, ‘- ‘ indicates the experiment was not run

Domain PG1 PG2
BW(8,0) 3.9(3.6) / 136 21.6(4.3)
BW(10,0) 28.2(5) / 210 *
BW(11,0) 81.7(5.7) /253 *
BW(12,0) 334.1(4.1)/300 *
BW(15,5) 37.8(4.4) /210 -
BW(20,10) 54.1(5.2)/210 -

.

above domain restrictions but we did try to limit the search space in PG2 (see above).
As the results show, PG1 produces optimal solutions, even on multiple-toilet

problems. This is because it performs a complete search of the solution space. Its

disadvantage is that it spends large amounts of time performing failed solution
extractions, and this is enough to make the planner time out for large problems.

PG2, by contrast, finds solutions much faster. The speed of PG2 is in part an
artifact of the simplicity of the BTC domain, as PG2 does not need to spend much
time at all in solution extraction. In these experiments, PG2 was dominated by the
graph generation phase, a trend that would reverse itself on more difficult problems.
Graph generation is a comparatively easy task whereas solution extraction requires
searching an exponential number of possible solutions. Furthermore, if the metric of
finding n mutexes per attempt at solution extraction (Mod 2, where n is the number of
literals on the layer) makes little progress on each iteration, PG2 might take longer
than PG1. Also, PG2 relies on the hope that it will find a solution without exploring
the whole search space. We ran PG2, for instance, reversing the order that the
operators are considered (that is, we tried preferring maintenance actions instead of
preferring non-maintenance actions), and PG2 showed the same difficulties for larger
BTC domains as PG1. Thus, PG2 may prove to be fragile on other domains. The
results above for PG2 should be viewed as an optimistic scenario, not the expected
scenario. PSIGRAPH is presented with a similar dilemma to that faced by a closed-
world Graphplan with a large number of propositions. We note that the BTC domain
will generate approximately 2*P propositions per layer, where P is the number of
packages, as there are P initial conditions of the form (Package P), and P exceptions
to [~Package(x)].

We ran PG1 and PG2 on the Blocks-World domain to test the algorithm in a more
difficult domain as well as to test its sensitivity to the number of unknowns in the
initial state. We used the BWStates program [12] with various numbers of blocks
with various numbers of unknown locations. Each problem was translated to
PSIPLAN, including elimination of Clear and use of psiforms instead. Table 3 shows
the tradeoff between PG1 and PG2.

Table 3 shows that PG1 is better on domains like blocks-world, presumably
because in the blocks-world doing an exhaustive solution extraction early and often is
a good idea since more mutexes will be found anyway. It also shows that PSIGRAPH
is relatively insensitive to unknowns in the domain. Domains (15,5) and (20,10) are
comparable to (10,0), in that both have the same number of known facts in the initial
state. Unknowns will not affect solution extraction; they only affect the time taken
for graph generation as they increase the number of operators to check. It should be
noted that Finzi et al. also timed their WSPDF theorem prover on the Blocks-World
domain, with a domain-specific BadSituation() predicate which favored exploration
of good towers. Their planner produced 17-step plans in 31.2 seconds, with an
additional 50.1 seconds to compile the domain for 20 blocks and 10 unknowns on a
333 Mhz UltraSparc processor. These results are roughly comparable to ours.
However, PSIGRAPH did not rely on any additional domain information, like the
BadSituations..

8 Conclusion

We introduced PSIGRAPH, a conformant planner based on Graphplan that uses the
PSIPLAN language, which allows for limited quantification. PSIGRAPH can work in

infinite domains, and in finite domains where not all objects are known and admits
very compact representations of domains with a large quantity of negative facts.

We evaluated PSIGRAPH on the BTC and Blocks-World (BW) domains, and
compared results from other planners. Only one of these other planners allows
quantification, namely WSPDF of [8] . For several BTC problems, PSIGRAPH is
faster than most other planners tested. In BW, PSIGRAPH is comparable to WSPDF,
though it is not clear how WSPDF’s domain dependent BadSituations affected its
timings.

Future work will improve PSIGRAPH, investigate more domains, and develop a
better understanding of the differences between PG1 and PG2. We will also expand
PSIGRAPH to allow conditional effects and general disjunction in the initial state,
and will explore the use of binary decision diagrams [6] for both ground and
quantified formulas.

References

1. Babaian, T. and J. Schmolze (2000). PSIPLAN: open world planning with psi-forms. In
Artificial Intelligence Planning and Scheduling: Proceedings of the Fifth International
Conference (AIPS’00), pages 292-300.

2. F. Bacchus and P. van Run (1995). Dynamic variable ordering in csps. In Proceedings of
the 1995 conference on Principles and Practice of Constraint Programming, pages 258-
275, September 1995.

3. Blum and M. Furst (1995). Fast Planning through planning graph analysis. In
Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI
95), pages 1636-1642, 1995.

4. Bonet and H. Geffner. Planning with Incomplete Information as Heuristic Search in
Belief Space. In AIPS-2000, pages 52-61, 2000.

5. Bryce, D., Kambhampati, S (2004)., and Smith, D.E. AAAI 2004 workshop on Learning
and Planning in Markov Decision Processes, 2004.

6. Bryant, R.E. (1986). Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, C-35(8), 677-691.

7. Cimatti, A. and Roveri, M. (1999). Conformant planning via model checking. In Biundo,
S. ed., Proc. ECP99: European Conference on Planning. Springer-Verlag.

8. Finzi, Pirri, and Reiter (2000). Open World Planning in the Situation Calculus. In
Technical Report, University of Toronto. AAAI, pages 754-760, 2000.

9. Hoffman and Koehler (1999). A new Method to Index and Query Sets. In 16 th IJCAI,
pages 462-467, 1999.

10. Kambhampati (2000). Planning Graph as a (Dynamic) CSP: Exploiting EBL , DDB and
other CSP Search Techniques in Graphplan. Journal of Artificial Intelligence Research 12
(2000), pages 1-34.

11. McDermott, D. A critique of pure reason. Computational Intelligence, 3(3):151-237,
1987.

12. Slaney, J., and Thiebaux, S. 1996. Linear time near-optimal planning in the blocks-world.
In Proc. Thirteenth National Conf. on Artificial Intelligence, 1208-1214.

13. David E. Smith and Daniel S. Weld. Conformant Graphplan. In (AAAI-98) and IAAI-
98), pages 889-896, Menlo Park, July 26-30, 1998. AAAI Press.

14. Weld, D. S. (1999). Recent advances in AI planning. AI Magazine20(2), 93-123.

Multiagent Systems
and Distributed AI

A Distributed Multiagent Workflow System

César A. Maŕın and Ramón F. Brena

Centro de Sistemas Inteligentes
Tecnológico de Monterrey, Campus Monterrey

Eugenio Garza Sada 2501
C.P. 64849. Monterrey, Mexico

{cesarmp, ramon.brena}@itesm.mx

Abstract. The decentralized and distributed nature of workflow in or-
ganizations demands for support from decentralized and distributed com-
putational systems. However, most conventional workflow applications
use centralized architectures. Agent technology seems to be an adequate
approach for supporting distributed systems. We have extended the ca-
pacities of a multiagent system for knowledge and information distri-
bution in such a way that it can handle general workflow processes in
a decentralized way. A working prototype is reported, and quantitative
experiments have been conducted to show that the distributed workflow
process flow control makes possible better scalability than the centralized
counterpart.

1 Introduction

Within enterprises, streamlining processes have led to the implementation of pa-
perless document circulation by means of workflow management systems (WfMS)
[1, 2]. They are today a standard component of many enterprise-wide information
systems and their value is widely acknowledged.

Within commercial and industrial domains, the business process execution
and the process flow control are performed in a decentralized way because or-
ganizations are physically and often logically distributed. In other words, there
is no central entity orchestrating each activity composing the whole business
process. This decentralized and distributed nature of workflow in organizations
demands for support from decentralized and distributed computational systems.
However, most conventional workflow applications use centralized architectures.

In this paper we present an extension of an Information and Knowledge
distribution system [3–5], which is an agent-based information system aimed to
distribute the right piece of knowledge to the right person within different parts
of an organization. In fact, distributing knowledge and information items could
be thought of as a restricted kind of workflow, as it just comprises a document
generation and its distribution, ending with the document reception by a final
user. But if, for instance a document needs to pass through authorization in order
to be distributed, then a more complex workflow is needed, and even this simple
task is beyond the basic version of our knowledge distribution system. So, we
enhanced our knowledge distribution system with general workflow capabilities.

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 79-88

This paper structure is as follows: After this introduction, we present some
background about our knowledge distribution multiagent system. Then, in sec-
tion 3 we present our proposal. In section 4 a working prototype is presented,
which is validated experimentally in section 5. Then, we compare our work with
others in section 6, followed by a conclusion.

2 Background - Our System Architecture

Fig. 1. Knowledge distribution system architecture.

Our workflow system is an extension of an information distribution system
[6], which is based on a multiagent architecture shown in Fig. 1. It comprises
some types of agents which appear in the mentioned figure but from which we
are going to explain just those agents which are important for the work we are
presenting:

Site Agent. This agent, works like a network router; it receives messages
from any agent and distributes the information to the proper users under its
site or domain. The distribution is made by first finding the corresponding users
located in conceptual hierarchies. These hierarchies may represent organizational
departments, interest areas, work groups, etc. Each Site Agent keeps in touch
with others Site Agents so that they all together make a network of agents for
information distribution.

Personal Agent. Each user may have one personal agent that filters the
information addressed to the user and shows it through a web browser, sends
him/her an e-mail or a message by a SMS service.

3 The Proposed Architecture

In our architecture, we are going to take the “personal agent” of JITIK as
the basic workflow executers. The proposed solution for decentralized workflow
process management consists in breaking down the workflow process execution

and the process flow control into small execution units handled by intelligent
agents, and allowing the agents to reflect the organizational structure and the
way processes are controlled and executed, i.e., distributed and decentralized.

For this purpose, two agent types are required: a new agent type named
Registry Agent for holding process descriptions, keeping track of all the run-
ning processes at every moment and creating process instances on demand; and
the existing Personal Agent for assisting its user/worker to perform his/her as-
signed tasks. In the end, Personal Agents are the actual organizational processes
orchestrators in a distribution and decentralized fashion.

Once all agents (one Registry Agent and one Personal Agent for each user
participating in a process) are up and running, the Registry Agent receives a
process description [7] as input and segments it into atomic task descriptions.
A task description is composed by the process identifier this task belongs to;
the information to be handled which can be a link to a document; the assigned
Personal Agent referenced by its user description in terms of the organization,
i.e., the Personal Agent of the user in department D and position P ; a list of
tasks to be enabled right after this task finishes its execution containing the
corresponding Personal Agent reference; the join and split operations to apply;
and the number of flows that converge to this task. After process description
segmentation, the Registry Agent distributes each task description to the corre-
sponding Personal Agent executor. This way, all Personal Agents know what to
do in advance when a task of a process instance is running, resembling the way
an organization works. It is assumed that each task is assigned to only one user,
i.e., a unique Personal Agent.

3.1 Agent Communication

Since all tasks are distributed, Personal Agents need to send messages among
them in order to enable tasks of the same process instance. In Petri Nets, a
token is a marker that specifies in which part of the net is occurring the actual
processing. In our system, a token is an agent message which contains a process
ID, an instance ID and a task ID over which the message recipient must operate.

A task is enabled when its Personal Agent receives the necessary tokens for
task enabling according to a join operation (AND, OR, XOR), e.g. let us assume
that in a process, tasks ta, tb, tc and td exist and are owned by Personal Agents
PAa, PAb, PAc and PAd respectively, and ta, tb and tc are direct predecessors of
td which in turn synchronizes the three incoming flows, i.e., PAd must perform
an AND-join operation in order to enable td. Therefore, right after PAa, PAb

and PAc finish its task execution, each of them send a token to PAd. And only
when all three incoming tokens are received task td is enabled and ready for
execution. A sequence diagram showing this token passing is illustrated in Fig.
2(a).

When a Personal Agent finishes a task execution and is about to enable the
successive tasks in the process flow, it sends a single enabling token for each
successor task to its owner Personal Agent according to a split operation (AND,
OR, XOR), e.g., let us assume that in a process, tasks tm, tn, to and tp exist

(a) AND-join operation.

(b) XOR-split operation.

Fig. 2. Enabling workflow tasks.

and are owned by Personal Agents PAm, PAn, PAo and PAp respectively, and
tn, to and tp are direct successors of tm which in turn selects one of the three
outcoming flows, i.e., PAm must perform an XOR-split operation in order to
enable only one of tn, to or tp. A sequence diagram showing this token passing
is illustrated in Fig. 2(a), here, task to was selected and thus the token was sent
to PAo.

A token can be sent by the Registry Agent or a Personal Agent. When the
Registry Agent enables one or more tasks is because a process instance has just
been created by it and the first tasks in such instance process are being enabled.
This is the only case in which the Registry Agent is involved in the process flow
control. When a Personal Agent enables one or more tasks is because it just
finished the execution of one of its tasks. Notice that several tokens can be sent
at a time by each Personal Agent for different process instances. Moreover, when
a task status changes (e.g. from enabled to in-execution), the task owner sends
a message to the Registry Agent to inform the event. This is for monitoring
purpose and will not be explained here.

4 Prototype

The developed prototype for distributed and decentralized workflow process ex-
ecution consists in several software layers shown in Fig. 3.

Fig. 3. Agent-based workflow software layers.

Agent Platform. The chosen agent platform for developing and executing
our system agents was JADE because of its robustness [8]. Additionally, we used
the JADE ACL messaging mechanism for agent communication.

Data Access. This layer is used for information access support. It allows
agents to acquire information about their user or search other users’ Personal
Agents.

Workflow. Workflow process descriptions [7] taken as system input, are
parsed and then segmented into atomic task description. This way, Personal
Agents are able to know their assigned activities in advance and perform their
tasks when a process instance is generated. This layer also works as information
provider to the upper layer as explained below.

Agent Communication. On top of the Workflow layer the communication
components were developed. These components are used for translating task
descriptions into Tasks, as objects, so that Personal Agent can manage them.
Based on these Tasks, Tokens can be generated and passed among agents for
workflow enactment.

System Agents. Personal Agents, a single Registry Agent (and other system
agent) are running constantly in the platform; they acquire information about
users, such as who and where is his/her Personal Agent, through the Data Access
layer; they rely on the Agent Communication layer for process instance creation,
token passing and task enabling; and furthermore, the Registry Agent creates
process instances and keeps track of all active processes.

5 Experiments

Since it is well known that a distributed application (e.g. using agents) diminishes
the workload among its element while increases the communication, the objective
of the experiments is to demonstrate that the proposed decentralized execution
of workflow processes can be implemented (concept proof) and that performs
better than a centralized approach. Thus, the performance of both approaches
were compared using the elapsed time for executing certain number of process
instances at a time.

Three processes were designed for this purpose, each of them representing
some basic workflow patterns [9]. It was decided to test using the basic workflow

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 2 4 6 8 10 12 14 16 18 20

E
la

ps
ed

 s
ec

on
ds

Number of process instances at a time

Decentralized execution
Centralized execution

(a) Tasks in sequence

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 2 4 6 8 10 12 14 16 18 20

E
la

ps
ed

 s
ec

on
ds

Number of process instances at a time

Decentralized execution
Centralized execution

(b) AND split and join

Fig. 4. Comparison between the centralized and the decentralized versions of workflow

patterns since when combined they form complex workflow processes. The first
testing process represents the sequence pattern which, according to its nature,
was combined with no other workflow pattern. And the second testing process
represents the combination of the parallel split and the synchronization workflow
patterns since they match, i.e., they are the AND split and joint.

An experiment consisted in the creation of an increasing number of process
instances at a time, i.e., first one process instance, then 2, then 3 and so on up
to 20 instances at a time. For each block of instances, the seconds elapsed from
the first instance creation until the last task in terminate of the last process
instance was measured. Thus, at certain moment there were several process
instances running at a time.

The execution of a task consisted on waiting certain amount of simulation
cycles. All tasks were standarized to 5 cycles and each cycle lasts 10 milliseconds,
which means that the total amount of time for executing a task is 50 milliseconds.
Notice that there was no central control on the passing time, i.e., each agent had
to decide how much time had elapsed by its own.

For resembling the centralized approach, all tasks of the testing processes
were assigned to one single agent who had to perform the whole work by itself.
There were other threads along with the centralized version in order to allow all
agents to operate under the same conditions.

For simulating the distributed approach, all tasks of the testing processes
were completely distributed, i.e., one agent were assigned to perform only one
task.

For testing our system with respect to sequential processes, a simple process
were defined in which 42 tasks is sequence were put. In the decentralized case,
each task was assigned to one single Personal Agent. And in the centralized case,
each tasks was assigned to a single Personal Agent. For the centralized case, when
processing a single instance, the elapsed time was of 96.275 seconds and for 20
instances the elapsed time was of 1778.313 seconds. For the decentralized case
the elapsed time was of 79.811 seconds for 1 process instance and 434.517 seconds

for 20 instances. As can be appreciated in Fig. 4(a) even for 1 process instance,
the decentralized approach overcomes the centralized one.

In other experiments, we tested our system with respect to parallel split
and synchronization, The process used for this test consisted of a single task
(thread) that splits into 40 different thread composed by one task each. After-
wards, all threads converges into another single one. In the centralized case, the
duration of one instance execution was 102.411 seconds and for 20 instances it
lasted 4068.367 seconds, i.e., over an hour for executing 20 instances. And the
decentralized case lasted 47.31 seconds for one instance and 523.287 seconds for
executing 20 instances of the same process. Figure 4(b) shows a comparison be-
tween these two approaches for workflow process execution. It is clear that a
decentralized approach overcomes a centralized one in execution time.

The results presented in this chapter demonstrate that the distributed and
decentralized execution of workflow processes outperforms a centralized archi-
tecture for the basic workflow patterns. It is clear that these results extrapolate
to more complex patterns, which are combinations of the basic ones.

We think these results are clear indication that the decentralized architec-
ture has advantages in terms of scalability, which is a very important issue for
large organizations. Indeed, in the experiments we can see that some of the
performance curves for the centralized version grew faster than linear.

The reason why the decentralized architecture outperforms the centralized
approach, in terms of scalability, is that in the latter we are increasing the number
of process instances over one single thread of execution (one Personal Agent),
eventually saturating it; this single thread becomes a bottleneck and produces
an increasing time overhead. That explains why, in the graphs presented, with
an increasing number of instances, time increases not linearly, but worse (we did
not investigate whether in the centralized case time was polynomial, exponential
or other, but clearly is not linear).

6 Related Work

In general, other agent-based workflow architectures [10–16], emphasize the ne-
gotiation aspect of multiagent systems and their distributed nature. Thus, they
proposed a distributed workflow system as well. However, they centralize the
workflow process execution in one single agent (called Workflow Agent or Trig-
ger Agent). In section 5, a comparison between a decentralized process execution
and a centralized one was presented. Results demonstrate that a decentralized
workflow process execution is better than a centralized one in terms of scalabil-
ity. In addition, in those architecture there are several agent instantiation at run
time under no control. In other words, they assume an environment with unlim-
ited resource while in real environments that cannot be assumed. Our system
does not makes that assumption since all agents are predefined to run at system
start up. Snd besides, the required quantity of agents in our system is linear to
the quantity of workers in the organization.

Compared to agent-enhanced approaches [17–19] our system architecture al-
lows to automate behavior, i.e. agents can execute tasks on its own without
human involvement, agents react to its environment, agents can adjust them-
selves, e.g., they can create new tasks or new routing depending on the circum-
stances, and finally, agents have high level features such as learning, negotiation,
and planning [20]. In other words, an agent-based application has more benefits
than an agent-enhanced workflow application since in the agent-enhanced work-
flow application agents’ behavior is limited to the possibilities of the underlying
WfMS.

Other architectures have been proposed for distributed workflow engines [21],
distributed components of workflow patterns [22], and a distributed architecture
in which components get communicated via ontological messages [23]. However,
in traditional distributed system, all decisions, coordination and cooperation are
hard-coded at design time. Additionally, the elements of these systems share a
common goal. These are remarkable differences between this kind of systems and
multiagent systems [24] since in the latter, the agents may not share common
objectives and therefore they must act strategically, so that they can achieve the
outcome they most prefer. In addition, agents are assumed to make decisions
about what to do at run time (acting autonomously) while traditional distributed
systems cannot.

7 Conclusions

We presented in this paper a multiagent-based architecture that supports decen-
tralized workflow processes execution. The proposed solution for this purpose
consisted in breaking down the workflow process execution and the process flow
control into small execution units handled by distributed agents.

A prototype was developed in order to prove that the proposed solution for
decentralized workflow process execution performs better than a centralized ap-
proach. Experiments were setup combining some of the workflow patterns and
for different number of process instances. The results were, in the two experi-
ments, conclusive since the decentralized approach outperforms the centralized
version. These results prove that a decentralized approach for workflow process
execution is more scalable than a centralized one.

As future work, we plan to include support for the remaining and more
complex of the workflow patterns [9], allow agents to perform automated tasks
without human intervention, e.g., when a task requires to incorporate informa-
tion automaticaly from particular information sources or alarms to be triggering
because of something happened in a legacy application.

Also, our decentralized proposal makes it possible to start a process execution
and at some part continue it within another organization. This would be inter-
organization workflow, which has great economic potential.

Acknowledgements

This work was supported by the Monterrey Tech’s Research Grant CAT011.

References

1. Koulopoulos, T.M.: The Workflow Imperative. Van Nostrand Rainhold, New York,
USA (1995)

2. Simon, A.R., Marion, W.: Workgroup Computing. Workflow, Groupware and Mes-
saging. McGraw-Hill, New york, USA (1996)

3. Aguirre, J., Brena, R., Cantu, F.: Multiagent-based knowledge networks. Expert
Systems with Applications 20 (2001) 65–75

4. Brena, R., Aguirre, J.L., Trevino, A.C.: Just-in-time information and knowledge:
Agent technology for km bussiness process. In: Proceedings of the 2001 IEEE
Conference on Systems, Man and Cybernetics, Tucson, Arizona, Octubre 7-10,
IEEE Press (2001)

5. Ceballos, H., Brena, R.: Combining local and global access to ontologies in a
multiagent system. Journal of Advanced Computational Intelligence and Intelligent
Informatics 9 (2005) 5–12

6. Brena, R., Aguirre, J.L., Treviño, A.C.: Just-in-Time Information and Knowledge:
Agent Technology for KM Bussines Process. In: Proceedings of the 2001 IEEE
Systems, Man, and Cybernetics Conference, Tucson, USA (2001)

7. P., C.A.M.: Decentralized Execution of Workflow Processes Using a Multiagent
Architecture. Msc. in intelligent systems, Tecnológico de Monterrey, Campus Mon-
terrey, Monterrey, México (2005)

8. Bellifemine, F., Poggi, A., Rimassa, G.: Jade - a fipa-compliant agent framework.
In: Proceedings of PAAM99, London. (1999)

9. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow Pat-
ters. Technical Report FIT-TR-2002-02, Queensland University of Technology,
Brisbane, Australia (2002) http://is.tm.tue.nl/research/patterns/.

10. Chang, J.W., Scott, C.T.: Agent-based Workflow: TRP Support Environment. In:
Fifth International World Wide Web Conference, Paris, France (1996)

11. Jennings, N., Faratin, P., Johnson, M., Brien, P., Wiegand, M.: Using Intelli-
gent Agents to Manage Business Processes. In: First International Conference
on The Practical Application of Intelligent Agents and Multi-Agent Technology
(PAAM96), London, UK (1996) 345–360

12. Manmin, X., Huaicheng, L.: Cooperative Software Agents for Workflow Man-
agement System. In: Fifth Asia-Pacific Conference on Communications and
Fourth Optoelectronics and Communications Conference (APCC/OECC’99), Bei-
jin, China (1999) 1063–1067

13. Yunlong, Z., Hongxin, L., Jinsong, X., Hongtao, W.: The Design of Cooperative
Workflow Management Model Based on Agent. In: 31st International Conference
on Technology of Object-Oriented Language and Systems, Nanjing, China (1999)

14. Gou, H., Huang, B., Liu, W., Ren, S., Li, Y.: An Agent-based Approach for
Workflow Management. In: IEEE International Conference on Systems, Man, and
Cybernetics, Nashville, USA (2000) 292–297

15. Botha, R.A., Eloff, J.H.P.: Access Control in Document-centric Workflow Systems
– An Agent-based Approach. Computers & Security 20 (2001) 525–532

16. Stormer, H.: A Flexible Agent-based Workflow System. In: The 5th International
Conference on Autonomous Agents, Montreal, Canada (2001)

17. Odgers, B., Shepherdson, J., Thompson, S.: Distributed Workflow Co-ordination
by Proactive Software Agents. In: Intelligent Workflow and Process Management.
The New Frontier for AI in Business IJCAI-99 Workshop, Stockholm, Sweden
(1999)

18. Dogac, A., Tambag, Y., Tumer, A., Ezbiderli, M., Tatbul, N., Hamali, N., Icdem,
C., Beeri, C.: A Workflow System through Cooperating Agents for Control and
Document Flow over the Internet. In: CooplS ’02: Proceedings of the 7th Inter-
national Conference on Cooperative Information Systems, London, UK, Springer-
Verlag (2000) 138–143

19. Hulaas, J.G., Stormer, H., Schonhoff, M.: ANAISoft: An Agent-based Architec-
ture for Distributed Market-based Workflow Management. In: Software Agents
and Workflows for Systems Interoperability workshop of the Sixth International
Conference on CSCW in Design, London, Canada (2001)

20. Yan, Y., Maamar, Z., Shen, W.: Integration of Workflow and Agent Technology for
Business Process Management. In: The Sixth International Conference on CSCW
in Design, London, Canada (2001)

21. Ceri, S., Grefen, P., Sáchez, G.: WIDE - A Distributed Architecture for Workflow
Management. In: IEEE 7th International Workshop on Research Issues in Data
Engineering (RIDE ’97) High Performance Database Management for Large-Scale
Applications, Birmingham, UK (1997)

22. Ferreira, J.P., Ferreira, H., Toscano, C.: Distributed Workflow Management En-
actment Engine. In: International Conference on Industrial Engineering and Pro-
duction Management, Porto, Portugal (2003)

23. Blake, M.B.: Agent-Based Communication for Distributed Workflow Management
using Jini Technologies. International Journal on Artificial Intelligence Tools 12

(2003)
24. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley and sons,

LTD, Baffins Lane, England (2001)

Cooperation in multirobotics environments

Félix Orlando Mart́ınez Ŕıos1 and Carlos Rodŕıguez Lucatero2

1 Universidad Panamericana campus Ciudad de México
Computer Science Department

fmartin@mx.up.mx
2 Universidad Iberoamericana
Computer Science Department

carlosr.lucatero@uia.mx

Abstract. In the present article we presented the results of a simu-
lator in order to evaluate the performance of multiagent systems. We
approached the problem of exploration of unknown environments using
three types of agents: one with ample observation capacities but with-
out moving ability, others with big displacement capacity but whose
observation ability is limited to the recognition of their present posi-
tion (explorers), and finally another group of agents with possibilities
of high displacement and load capacity, and narrow sensorial capacity
(shippers).
In this work we also present a proposal about paths memorized by agents,
based on the creation of a tree of obstacle-free paths. This tree is stored
in a blackboard to which all the shipper agents have access, and enables
them to choose the best trajectory from their current position to the
point in which the samples have been discovered. This work also displays
a strategy of collaboration and conflict resolution based on a contract
net-like mechanism.

1 Introduction

The problem which we solved with this multiagent system consists on the ex-
ploration of an unknown environment [12]. This space is composed by a set
of obstacles and samples (objects to be collected) that have to be loaded and
bring to a special point which we will call ET 0. We will analyze three different
approaches to solve this problem:

1. In the first method we have agents who explore and load samples to the
point ET 0 without collaboration.

2. The second approach besides using previous strategy, incorporates collabo-
ration between agents, such that when an agent discovers samples in the
environment, when returning to the point ET 0 it leaves landmarks that can
be used by itself or other agents to follow this way and then go back to the
point where samples were discovered.

3. Our approach is to divide the agents in three different types: the first one
with ample calculation and observation abilities (MR1), the second (MR2)

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 89-98

with great possibilities of displacement and capacities of observation limited
to its present position and the third (MR3) with load and displacement
possibilities as well as capacities of observation limited to its present position.

Proposals one and two were made by Wooldridge in [12], whereas the third
one is our proposal of solution.

1.1 Types of obstacles used in the simulations

In our experiments we used randomly generated obstacles as well as obstacles
with some kind of symmetry that makes some subregions of the environment
become hard to access by the agents.

Fig. 1. Obstacles used in the simulations

The obstacles of the Figure 1.a) were randomly generated in all the search
space . From now on we will call it type 1 obstacle. We will also identify like
this type of obstacle those that are constructed by the user, as it is shown in
Figure 1.b), guided by a graphical software. In the obstacle of Figure 1.c) the
environment is divided vertically. The agents can move from one side to the
other through a small hole placed in the middle of the obstacle. This will be
identified as type 2 obstacle. Figure 1.d) presents a small box that completely
surrounds the point ET 0. This box has a hole in the left bottom corner through
which the agents can leave and go back to ET 0. This obstacle will be identified
as type 3. Figure 1.e) displays an obstacle that is similar to the previous one,
but in each corner of the box, it has a hole. This will be identified as type 4.
The obstacle of type 5, is displayed in Figure 1.f). Like the type 2, has a vertical
line that divides the space in two equal sized areas. Unlike the type 2 obstacle
this one has several random holes. Figure 1.g) shows type 6 obstacle, made up
by two perpendicular lines that divide the search space in four regions of equal
dimension. These lines have several random holes that enable the communication
between different subregions. Finally, in the Figure 1.h) it can be observed the
type 7 obstacle, that like the type 6, has two perpendicular lines but in this case
it only has one hole that connect subregions.

Martínez F., Rodríguez C.90

2 Experimenting with Wooldridge’s proposals

The first solution proposed by Wooldridge [12] consisted in a set of robots that
do not communicate to each other and which behavior were basically reactive.
Robots leave the main ship (in ET 0 point) and begins to explore using random
movements, when an agent finds samples then load them and return to ET 0

following the decreasing gradient field. The other solution given by Wooldridge
consisted in a multiagent system with a cooperative behavior (simple but very
limited). In that case Wooldridge assumes that the agents return to point ET 0

leaving radioactive landmark in the path. Because we couldn’t find numerical
results of Wooldridge proposals, we have to simulate his models in order to
compare these results with our results.

Previously we did some tests to determine the number of runs necessary to
obtain average times that not differ from each other more than 5%.

This strategy of collaboration improves a little the first given solution [2, 6,
7], because it leaves at least a sign of the way to follow from the position of
the samples to the ship. Unfortunately if an agent passes over the marks they
are erased. In addition there is no guarantee that when arriving at the group of
samples at the end of the way they remain there. Another inherent problem is
that when arriving at an intersection of ways, there is not a criteria to decide
which path must be taken.

From results shown in Table 1 we obtain the following conclusions:

1. For the case of obstacle 1 and 4 both models fulfilled the total of the task in
100% of the simulations, but the time for collaboration case was 23% better
for obstacle 1 and 13% better for the obstacle 4, than the time taken by the
simulator without collaboration.

2. In the case of type 3 obstacle the time improvement was 28% and in the
100% of the simulation cases task was completed.

3. When using type 6 obstacle the percentage of success in the total fulfillment
of the task did not improve remarkably, but the total time was improved in
a 28%.

4. For the case obstacle 7 the task fulfillment time was improved as well as the
percentage of times that the simulator completes the task until a 100%.

5. Concerning the obstacles of type 2 and 5 their total time was not improved
but an increase of 32% and 26% was obtained respectively.

3 Description of our proposal

Our environment consists of two dimension finite space, that will be represented
by a matrix ET composed by n × m cells.

Each element ETi,j , 1 ≤ i ≤ n and 1 ≤ j ≤ m they represent only one of the
following components: empty space, a robot mrl

k, a number r ∈ N of samples,
or an obstacle.

The samples located in each grid of the search space, are placed randomly
by the simulator.

Cooperation in Multirobotics Enviroments 91

without collaboration with collaboration

Obstacle type Time (s) success percentage Time (s) success percentage

Obstacle 1 574 100 445 100

Obstacle 2 1867 54 4205 86

Obstacle 3 1048 96 761 100

Obstacle 4 468 100 411 100

Obstacle 5 1008 87 2006 100

Obstacle 6 994 92 723 93

Obstacle 7 2856 55 2551 81

Table 1. Simulation results of Wooldridge’s models with and without collaboration
for the seven different obstacle types. We show the total average time to complete the
task and the percentage of success in the different simulations

We also have a distinguished element of ET 0 with coordinates i0 and j0 that
we will defined as starting point and that can be any of the ET cells, with the
constrain of not being surrounded by obstacles preventing the access to this
point.

We also divided the agents in three classes taking into account: its observa-
tion capabilities, processing power [11, 6, 7], displacement abilities and loading
capacities [10]. These classes are:

1. Class MR1: To this class belongs just one agent. It has observation, com-
munication, calculation and storage possibilities, but cannot move. Its ob-
servation capabilities enable him to determine if an obstacle-free straight
path joining two cells ETi,j and ETu,v exists. Similarly it can store the re-
ceived information of the agents of class MR3 (shippers) concerning the
obstacle-free straight paths that have been used to reach some ETi,j . It also
has ample communication capacities that enable him to communicate, as
mediator, with all the remaining agents.

2. Class MR2: Here we will have a set of agents having large displacement and
observation capabilities. We will call them explorers. Their processing and
storage power are small and its main function is to explore the environment
to determine the existence of obstacles and samples. These agents contract
the agents of class MR3 who will make the recollection of the samples. We
will call them mr2

k agents.
3. Class MR3: To this last class belong the agents with large loading and

displacement capacities but with no observation abilities. These agents will
be called shippers and be denoted as mr3

k. These are in charge to collect
the samples and bring them to the ET 0 point. These agents use for their
displacement the obstacle-free segments of the path that already have been
discovered by other agents of the same class and which are stored in the
MR1 agent of class .

Martínez F., Rodríguez C.92

3.1 Behavior of the agents

The explorer agents, in class MR2, leave the ET 0 point, and move randomly,
same as in Wooldrige’s model (we focus our attention improving the efficiency
of our proposal based in cooperation between agents). If a cell is empty (not
occupied by another agent and without obstacles), these agents will move to it.
Once in the cell they verify the presence of samples, and if it is the case, then
begin the hiring of shipper agents process (belonging to MR3 class).

Let us suppose that the explorer agent arrive at the cell with coordinates
u, v in which it discovers samples, then begins a hiring shipper agents process
based on the contract network mechanism [2, 6, 5] and using KQML [9, 3, 8, 4]
as the communication language. The agents messages are sent to a blackboard
where can be read by the rest of the agents on the system. The agent in MR1

is charged to support all the blackboard information. Shipper agents that are
not currently engaged in a task can read the blackboard to see if they find there
hiring messages.

The explorer agents follow a task allocation rule that tries to reduce the
number of agents that participate in the recollection. For that reason, once the
blackboard was reviewed (agents are ordered decreasingly by their loading ca-
pacity) the shipper agents are selected in that order until the amount of samples
detected by the explorer agent can totally be loaded. The idea behind this process
is to have the smallest possible number of agents moving in the search space and
to minimize conflicts produced by crossing paths.

The shipper agents who have been contracted to recollect the samples follow
the next sequence of steps:

1. With the information stored in the MR1 class agent, it determines if between
the points of coordinates u, v and i0, j0 an obstacle-free straight path exists. If
it exists then it follows the straight line segment that join them and publishes
in the tree of discovered paths.

2. If it does not find a straight path in the previous step, then it begins to
consult the information stored in the tree of discovered paths. Whenever
it arrives at a node of this tree it follows the same behavior of the step 1,
to try to arrive at u, v. This process continues until it finds a road. In this
case a new obstacle-free segment is added to the tree. Otherwise the tree of
discovered paths overflows and the task is rejected.

3. If the number of rejected tasks exceeds a given threshold, then the shipper
agents move randomly trying to achieve a point where the recollection task
can be continued and apply the step 1. If this process also fails then the task
is kept in the blackboard for later accomplishment.

3.2 The tree of discovered paths construction

In order to understand how the tree is constructed a hypothetical scene is given
as example in Figure 2.

The node labeled by 0 corresponds to ET 0, the points labeled by 1, 2, 3, 4, 5
and 6, correspond to cells in the neighborhood where there is a certain number

Cooperation in Multirobotics Enviroments 93

Fig. 2. Example of construction of the tree of obstacle-free straight paths

of samples to gather. Finally, the segments of straight lines represent obstacles.
Initially the tree is empty. Let us suppose that an explorer agent arrives at
point labeled 2, and at this point we have an obstacle-free straight path. Then
shippers will arrive at this point and will store a first node in our tree having
the coordinates of the achieved point. At this stage the tree is rooted at the
0 node, the coordinates of the point are stored in the node and a descendant
node labeled by 2 is added to it (the coordinates of point 2 are stored in the
corresponding node). This construction stage is displayed in Figure 3.a).

Later the explorer agents discover points 1 and 3, in this order. Given that
they are not reachable by an obstacle-free straight path from 0, then the infor-
mation of the tree is consulted and it is observed that point 1 can be reached
from point 2. This new path is added to the tree as it is shown in the Figure
3.b). Similarly the path to the node 3, from node 2 is added, as it is shown in
the Figure 3.c). After that, points 4, 5 and 6 are discovered, in that order, and
added to the tree as it is shown in the Figure 3.c). It is important to notice that
point 5 cannot be reached before discovering point 4 or 6. It’s clear that this is
not a binary tree because more than two paths can be added to the same node.

Many trees can be constructed for the same environment (depending how
samples are discovered). This is not and issue because the tree only is useful to
access new locations based on previously known locations and not to describe
the environment itself.

This mechanism can fail if there is no reachable point from ET 0 . In order
to avoid this problem the simulator is equipped with a positive integer value
representing the maximum number of allowed failures. When this value is reached
the shipper agents make a first random walk [1]. After that the initial algorithm
is retaken.

3.3 Conflict negotiation between agents ready to collect samples

When an explorer agent mr2
m detects samples, it sends a hiring message to all

the shipper agents. This message is attended by all the shipper agents which are

Martínez F., Rodríguez C.94

Fig. 3. Tree of obstacle-free paths for the example on Figure 2

in the ET o point. The agents that are already making a recolection will not be
able to respond to these messages.

The strategy followed in this negotiation consists on diminishing the number
of agents of class MR3 which participate in the sample recollection. This is made
by taking the agents that have greater lifting capacity, for which the explorer
agent acts like mediator. In this selection process the shipper agents, are sorted
in decreasing order of their lifting capacity, and are seleced those with greater
capacity until achieving the amount of shipper agents needed to collect the
discovered samples.

This strategy has three basic purposes:

– To diminish the number of shipper agents which travel to a point of the
environment. Doing this we can guarantee that having less agents we reduce
the number of conflicts in crossing paths.

– To maximize the amount of collected samples because the agents are loaded
at their full capacity.

– To diminish the amount of information about the environment that must be
stored in the free-path tree discovered that is updated by each recollector
agent who discovers a new path.

3.4 Path conflict resolution by a negotiation mechanism

The negotiation principle followed by the agents in our system tries to optimize
the global objective that is to collect the greatest possible number of samples
in the smallest period of time. Based on this principle, the negotiation between
agents follows the next rules:

1. If an explorer agent mr2
m and a shipper agent mr3

k try to occupy the same
ETu,v cell, the shipper has occupation priority over the explorer agent.

2. If two shipper agents mr3
m and mr3

k try to move to the same ETu,v cell,
the shipper agent who is loaded and is going to deliver its load will have
occupation priority. The agent who can not occupy the cell, begins a random
walk and tries to recover its plan some movements later [1].

Cooperation in Multirobotics Enviroments 95

3. If two shipper agents mr3
m and mr3

k try to move to the same ETu,v cell, and
are not loaded then the agent of greater lifting capacity will have ocupation
priority over the other. The other enters into a state of random movements
for recovering later his original trajectory. In the case that both agents have
equal lifting capacity it will be decided randomly who will occupy the cell.

4. If two shipper agents mr3
m and mr3

k try to move to the same ETu,v cell,
and both are loaded then the agent with the greater possible load will have
priority over the other. If both have equal load capacity the decision of who
has priority over the other will be at random. The agent whith less priority
enters into a random movement state and tries to recover its path after
certain number of movements [1].

5. If two explorer agents mr2
m and mr2

k try to move to the same ETu,v cell,
then it will be decided randomly who will occupy the cell.

3.5 Experimental results under our cooperative model

The experiments were made for different proportions of explorer and shipper
agents, going from a 10% to a 90% of explorer agents (increasing by 10% steps
this amount) and for a 95% of explorer agents. Each one of these proportions
was tested with different obstacle types. In Figure 4 we show the average time
necessary to complete the 100% of the sample recollection, applied to different
obstacle types and for each different explorer and recollector agent proportions.
We can draw from Figure 4 the following conclusions:

1. Independently of the obstacle type, it can be observed that the time nec-
essary to complete the task diminishes with the increase on the number of
explorer agents until a value of 80% but it starts to increase again from
this value which is observed for a 90% and 95%. Evidently more samples
are discovered, but there are very few recollector agents to carry out them
and these samples are left idle in the blackboard until a new opportunity
appears.

2. The best proportion between explorer and recollector agents is between 70%
and 80% of explorer agents.

Now we will compare the results obtained with our proposal against the
results obtained using the two Wooldrige’s models. Analyzing the Figure 5 it
can be observed that the average time invested using our proposal to complete
at 100% the task, with the different obstacle types, was significantly less than
the average time under the Wooldridge’s models. Moreover the worst results
produced by our proposal (for the case of a 10% of explorer agents) were better
than the results obtained using the Wooldridge’s proposal.

4 Conclusions

1. Our proposal of agents with different capacities concerning observation ca-
pabilities as well as loading and displacement abilities, outperform the one
that uses only one type of agent proposed by Wooldridge.

Martínez F., Rodríguez C.96

Fig. 4. Times to complete the recollection task with different proportions of explorer
agents and different obstacle types

Fig. 5. Average time comparison between our model with the Wooldridge model for
all the obstacle types

Cooperation in Multirobotics Enviroments 97

2. The negotiation and collaboration strategy for resolving conflicts, based on
giving priority to shippers over the explorers, was quite efficient for these
kind of problems.

3. The best performance of the system for the sample recollection, was obtained
when using between 70% and 80% of explorer agents.

4. It has been experimentally shown that learning obstacle-free path method
used in our simulator is a very efficient recognition form of the search space.
In this sense, it must be mentioned that the size of the trees in most of the
cases do not exceed a depth of three levels, and because of that the agents
have a faster way to reach different points of the explored space.

5. The strategy of random movements of the shipper agents used to solve the
problems of unexpected obstacles in their planned trajectories was quite
effective, because noncollected samples never appeared.

References

1. Barraquand, J., Latombe, J.C.: Robot Motion Planning: A distributed represen-
tation approach. STAN-CS-89-1257 (1989) Stanford University.

2. Durfee, E.H.: Coordination of Distributed Problem Solvers. Kluwer (1988).
3. Finin, T., McKay, D., Fritzson, R.:An overview of KQML: A Knowledge Query and

Manipulation Language. Technical Report (1992) U. of Maryland CS Departemnet.
4. Ginsberg, M.L.: Knowledge interchange format: the KIF of death. AI Magazine

archive 12 (1991) 57–63.
5. Haddadi, A.: Communication and Cooperation in Agent Systems: A pragmatic

Theory. Springer-Verlag (1996) Heidelberg.
6. Huhns, M.N., Singh, M.P.: Agenst and multiagents systems: Themes, approaches,

and challenges. Distributed Artificial Intelligence 1–23 (1998). Morgan Kaufmann
San Francisco CA.

7. Jennings, N.R.: Coordination Techniques for distributed Artificial Intelligence, In
GMP O’Hare and N.R. Jennings, editors, Foundations of Distributed Artificial
Intelligence (1996). 187–210 John Wiley and Sons Inc. New York.

8. Labrou, Y., Finin, T.: A Proposal for a new KQML Specification.
http://www.csee.umbc.edu/kqml/papers/kqml97.pdf (1997).

9. Neches, R. Fikes, R., Finin, T. Gruber, T., Patil, R.,Senator, T., Swartout, W.:
Enabling Technology for knowledge sharing AI Magazine 12(3) (1999) 36–56 Fall.

10. Rao, A.S., Georgeff, M.P.: An abstract architecture for rational agents. In C. Rich,
W. Swartout and B. Nebel, editors, Proceeding of Knowledge Representation and
Reasoning, Morgan Kaufmann (1992) 439–449.

11. Shoham, Y.: Agent-Oriented Programming, Artificial Intelligence 60-1 (1993) 51–
92.

12. Wooldridge, M.: Intelligent Agents. In G. Weiss editor, Multiagent Systems: A
Modern Approach to Distributed Artificial Intelligence MIT Press Cambridge MA
(1999) 27–77.

Martínez F., Rodríguez C.98

Economics of Cooperation:
Social Foraging in Distributed Systems

Ashish Umre1 and Ian Wakeman1

1 Software Systems Group, Department of Informatics,
University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom

(ashishu, ianw)@sussex.ac.uk

Abstract. The sharing and collective processing of information by individuals
in any social system is an attempt to reduce the uncertainty associated with key
features of their environments by collecting and storing information. By
sampling each of its options regularly, an individual gains from being able to
exploit them when they are productive and avoid them otherwise. In this way,
collection of information can be thought of as a solution to the uncertainty
problem that maximises potential opportunities [3], [4]. Some group-living spe-
cies have evolved effective social mechanisms for reducing uncertainties in
their environments. However, doing so may entail certain costs with respect to
attributes such as time, energy and attention. In this paper, we explore the
cost/benefits of cooperation within the domain of distributed systems, where
biologically inspired agents interact with each other using the environment to
disseminate information about resources (foraging sites). In the sections that
follow, we describe briefly the theory of cooperation, social foraging theory,
the simulation model and some experiments to understand/analyse the dynam-
ics of social foraging in stochastic environments.

1 Introduction: Social Foraging and Cooperation

To account for the manifest existence of cooperation and related group behaviour,
such as Altruism and Restraint in competition, evolutionary theory has acquired two
kinds of extension: Genetic kinship theory and reciprocity theory. If the agents are
sufficiently closely related, altruism can benefit reproduction of the set, despite loses
to the individual altruist. The evolution of the suicidal barbed sting of the honeybee
worker could be taken as a paradigm for this line of theory [12].

Many of the benefits sought by living things are disproportionally available to
cooperating populations. The problem lies with the fact that while an individual can
benefit from mutual cooperation, each can also do so even better by exploiting the
cooperative efforts of others. Over a period of time, the same individuals may interact
again, allowing for more complex patterns of strategic interactions. [10] Argues that
there are at least three ways that cooperation can evolve among unrelated individuals:
reciprocity, group selection, and by-product mutualism. Though, kin selection is a
fourth candidate.

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 99-108

As well as the existence of group, team and partitioned tasks in complex societies,
another facet of higher-level functionality is a shift from individual to social/group
foraging strategies. [18] identified six foraging strategies in ant colonies: (1) ‘individ-
ual foraging’ foraging without cooperation and communication with others; (2) ‘tan-
dem running’ a scout guides one recruit to the food source with or without trail lay-
ing; (3) ‘group mass recruitment’ the scout guides a group of recruits to the source,
usually laying a trail to the nest; (4) ‘mass recruitment’ the scout lays a trail while
returning to the nest which guides recruits to the food source; (5) ‘trunk trail’ semi-
permanent trails guide foragers to long-lasting food sources; and (6) ‘group hunting’
a group leaves the nest and forages collectively in a swarm along a well-defined trail
system. These strategies also appear to be correlated with a decrease in the autonomy
of the individual foragers themselves [19]. That is, there is a shift from information
processing by individuals to emergent properties of a set of essentially probabilisti-
cally behaving individuals mediated through signals, i.e. a set of trail pheromones.
For instance, in an individual foraging strategy the worker must rely on its own in-
formation, navigating back to the nest using the sun or other landmarks (e.g. the de-
sert ant Cataglyphis bicolor).

In tandem running, a successful returning forager can recruit just one individual

and passes on information of where the food source is by physically leading the re-
cruit to the source (e.g. Leptothorax). However, with more complex strategies trail
pheromones can pass the information not just to one other recruit but to many. There
is no need for an individual to be able to navigate back to the nest using the sun or a
prominent rock but can simply orient (‘smell’) their way along a chemical trail (e.g.
Atta). Despite the apparent simplicity of this task, foragers experience a constant
probability per unit distance of losing the trail. Seemingly counterintuitive, this ap-
parently errant behaviour has been shown to be very adaptive at the group-level [20,
21]. Once lost, these workers become scouts who can search for new sites. However,
it appears that the error rate is sufficiently tuned so that enough foragers do not lose
the trail and thus can exploit the source whilst enough become scouts enabling a con-
stant supply of new sources. (Parallel behaviour is known in honeybee foraging in
which the directional information in waggle dances is imprecise) [22]. It seems that
the complexity emerges at the level of the trail network (or group), which can adap-
tively adjust to fluctuating food dispersion or density. Thus, the foragers are a ‘group-
level adaptive unit’ [5, 23], and also see [24].

2 Then again, how advantageous cooperation really is?

The acquisition and use of socially acquired information is commonly assumed to be
profitable. But, there could be scenarios where the use of such information either
provides no benefit or can actually incur a cost. It is suggested [2] that the level of
incompatibility between the acquisition of personal and socially acquired information
will directly affect the extent of profitability of the information, when these two
sources of information cannot be acquired simultaneously, because of cognitive or

100 A. Umre, I. Wakeman

physical constraints. Also, a solitary individual’s behavioural decisions will be based
on cues revealed by its own interactions with the environment.

However, in many cases, for social animals the only socially acquired information
available is the behavioural actions of others that expose their decisions, rather than
the cues on which the decision was based. In such a situation it is thought that the use
of socially acquired information can lead to information cascades that sometimes
result in sub-optimal behaviour.

In our experiments, we look for results that suggest the presence of information

cascades in the context of information sharing in distributed systems. Designing
agents that rely both on individual foraging and shared information, or agents that just
rely on shared information. Ongoing studies are focused on understanding whether
this might happen in a highly dynamic environment; where there are constant changes
in the flow of information about resources that undergo frequent updates.

2.1 Cost of cooperative efficacy

In any social group, individuals possess various behaviours that define the assortment
of the interactions at all sorts of levels, individual, groups, cliques, teams etc. The
social foraging theory suggests that, the functional consequence of an individual’s
foraging behaviour depends on both the individual’s own actions and the behaviour
of other foragers. There may be conflicts of interest between signallers and receivers.
Where such a conflict exists, the receiver’s need to acquire information may favour
sensitivity to the cues provided by the behaviour and appearance of the signaller. In
turn, this sensitivity may give rise to opportunities for manipulation and exploitation
by the signaller.

It is understood that exploitative strategies are unlikely to persist in the long run,
because they generate selection for a change in receiver responses. However, it is
argued, that the evolution of exploitation may prove a recurrent, though, transient
phenomenon. There are costs associated with broadcasting information publicly, as
exemplified by the production of “food vocalisations” in many social animals. The
issues that come under this context are, dangers of predation, and mass recruitment to
a very less profitable resource may lead to starvation. This is equivalent to the “Slash
Dot” effect that the Internet sometimes experiences.

Other costs within the context of a social system are cost of misinformation (ly-

ing), cost of accessing/using the resources and cost of signalling/cooperation. We use
foraging games to analyse the economics of Kleptoparasitic1 behaviour, to predict the
ecological circumstances under which the behaviour is maintained. Other costs are
expressed as survival rate; if an agent keeps failing/delaying to locate resources for

1 Kleptoparasitism refers to all forms of exploitation of others’ food discoveries or captures. It

constitutes the information-sharing models in the Social Foraging Theory paradigm.

Economics of Cooperation : Social Foraging in Distributed Systems 101

the requested processes/services it gets penalised and if this increases above a thresh-
old, then the agent dies and a new agent replaces the old agent.

3 Model Overview

We implement a discrete-event simulation of cooperative (collaborative) agents,
which share information (through the environment, Stigmergy2) about the location of
resources. A process generator (P) generates processes/requests/tasks with Poisson
distribution. Processes enter the system queue at the start of the simulation, where
they wait to be allocated to agents (which are initialised randomly). An agent gets
allocated a process/task. Individual processes/tasks require a certain number of re-
sources/services (r

N

1, r2...rn) that it requires for the successful completion/execution of
the process.

The resource generator (ℜ) generates a random number of resources for the suc-

cessful execution/completion of a request. When an agent encounters some informa-
tion about a resource/service, it probabilistically stores the information in its resource
vector and/or publishes the information onto a “HotSpot”, if it decides to share it with
others.

 Target Vector (τ)

 ρ1

 Pn ρ2

 (r1…..rk)
 ρm

 ρm
 ρ2

 ρl

 ..………………

 α1 α2 αm

 Agent Resource Vector

Process Generator P

Resource Generator R

Agent
Generator /
Handler α

HotSpot β

 Pn(r1.… rk)

Fig. 1. Schematic representation of the information dissemination system.

If the agent encounters a resource it is searching for, it locks the resource, provided

it’s available at the time and marks the resource entry in the target vector (which
contains the list of processes waiting to be finished and the status of the resources)
under the specific process. Once all the required resources/services have been located,
the process is executed. The agent can only lock the resource for a fixed time after

2 The term “Stigmergy” was first introduced by Pierre Paul Grassé, a French entomologist, in

1959. He used the term to describe the coordination of activities of ants in carrying out com-
plex activities, such as nest building or foraging, without direct communication amongst
themselves. It is evident that stigmergy describes a form of asynchronous interaction and in-
formation interchange between entities mediated by an “active” environment.

102 A. Umre, I. Wakeman

which it will have to rejoin the queue. The agent incurs a cost once it has locked a
resource. A resource diminishes by a certain value while the process/task is being
executed. The jth process assigned to the ith agent is pij, and costs it . Individual

resource cost is , for the resource r

ijC
nr

ijC n. Cumulative cost associated with jth process

is,

1

n
N

r
ij ij

n
C C

=

= ∑
(1)

Agents can cooperate and form groups to collaboratively execute the process/task

or choose to forage alone. The throughput of the system is calculated as a function of
successfully completed jobs in the minimum time and with minimal costs. Agents
probabilistically (ρ) cooperate with other agents, and decide to share information
through the HotSpot or not. If the agent incurs a cost which is higher than the cost on
its previous task , it then either chooses to collaborate with other agent(s)

by forming a group and/or change its degree of cooperation. This acts as a simple
adaptive learning mechanism and some form of reciprocity. An agent’s cooperative
strategy (probability of publishing/sharing information) changes after every process
or during successive simulation runs. This is more or less an equivalent NASH equi-
librium

1ij ijC C
+
>

3 for the agent.

We have considered the resource handling time as negligible and the process

execution time as a random time factor. Other agents looking for the same resource
can access the HotSpot and search through the advertised resources/services. The
HotSpot contains the information about resources and their location. Each resource
published at the HotSpot has a reinforcement value (similar to pheromone deposit)
associated with it, which signifies the demand (∆) of the resource.

Every time an agent accesses resource information at the HotSpot, it reinforces the

pheromone deposit so that the resource path continues to exist, whereas if the rein-
forcement value goes below a certain value, it gets over written by the first new re-
source that appears in the system. Hence, the table is constantly updated with the
latest information about resource paths. Agents attempt to optimise costs locally and
globally in accordance with the dynamics of their interactions.

3 Nash Equilibrium is a combination of strategies for the players of a game, such that each

player’s strategy is a best response to the other players’ strategies. A best response is a
strategy, which maximises a player’s expected payoff against a fixed combination of
strategies played by the others.

Economics of Cooperation : Social Foraging in Distributed Systems 103

3.1 Results and Analysis

We analyse some aspects of artificial and biological social systems, such as, optimal
number of agents in the system [11], throughput of the system, degree of cooperation
(which can depend on an implicit factor of relatedness). Demonstration of the use of
Nash equilibrium, to show the “tragedy of the commons” for certain situations both in
the simulations and in real life, e.g. Slash Dot effect. How a certain resource gets over
exploited because of it being over publicised and may lead to its exhaus-
tion/starvation. Similarities with Caraco’s food calling game [1], [15], when agents
individually look for resources and on finding it, decide to publish it or not. Accord-
ing to Caraco’s model if they decide against publishing the information, then they are
more susceptible to predation.

3.1.1 Optimal Group Size?

In general, we observe a peaked fitness function [6] when we analyse the system as a
collection of agents trying to maximise the throughput and minimise the delay in
acquiring information. The peaked function we see in Fig. 2 illustrates the existence
of only one optimal agent population size for which, the throughput of the system is
maximum, given that certain other parameters in the simulation remain fixed, like the
number of resources.

This suggests that initially an increase in the agent population is beneficial in obtain-
ing a good throughput, but the throughput peaks at some point for a certain size of
population implying that there are enough agents to process requests for resources
any further increase will result in delays due to queuing for resources. The Increasing
Fitness plot is an indication of abundance of resources.

0

10

20

30

40

50

60

70

80

90

1 3 5 7 9 11 13 15 17 19

Number of Agents

Th
ro

ug
hp

ut

Peaked Fitness

Increasing
Fitness/Throughput

Fig. 2. Optimal Number of Agents.

104 A. Umre, I. Wakeman

3.1.2 Throughput of the System

The time taken to find all the resources for a request can vary depending on the
number of resources required. Therefore, we calculated the average time (τavg) taken
for finding the various resources over a series of runs and accumulated the data for all
the possible number of resources in the system. We were interested in finding out the
trend that follows in terms of time/hops taken to locate all those resources. As seen
from Fig. 3(a) out that there is an increasing trend with respect to the number of hops.
As the number of required resources increases it takes more time to find them, but the
trend shows that there could be a decrease later on in the system as the agents develop
an optimum response for each request, as the number of resources increase. This also
may lead to a drop in the number of cooperators, meaning that individual foraging
can sometimes also be a useful strategy Fig. 3(b). Fig. 3(c) shows the average cost
incurred by agents over successive simulation runs. The drop in average cost suggests
an increase in information sharing and level of cooperation.

0

4

8

12

16

20

24

28

32

36

40

0 5 10 15 20 25 30 35 40

Time (x100 steps)

N
um

be
r o

f C
oo

pe
ra

to
rs

Number of Cooperators

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18 20

Resources

 H
op

s

0

6

12

18

24

30

36

0 5 10 15 20 25 30 35 40
Time (x100 steps)

A
ve

ra
ge

 C
os

t

Average Cost

av
g

ij
C

avg

ijC

Fig. 3. (a) Time (τavg) to establish a resource path. (b) Number of Cooperators. (c) Average
cost over successive runs. avg

ijC

Economics of Cooperation : Social Foraging in Distributed Systems 105

3.1.3 Slash dot effect/Kleptoparasitic Behaviour

Slash dot effect, whereby popular data becomes less accessible because of the load of
the requests on a central server. The following Fig. 4 demonstrates the percentage
increase in the number of agents in the queue for a resource e.g. resource r12 in this
figure. The figure also displays the corresponding decline in the throughput for
processes requiring the service r12.

This implies that popular request for a service can lead to it being highly adver-

tised or “vocalised”, resulting in the depletion and decreased performance of the ser-
vice. Therefore, unless there is a way to adapt to this phenomenon, the services will
continue to fail or perform at a sub-optimal behaviour. Current work is aimed at
studying the possibility of introducing service replication in the locality of the current
service. This will distribute the load of the service and help process more requests.
Also, it will handle to a certain extent the dynamic nature of the system wherein the
services can fail.

0

20

40

60

80

100

120

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

Time (Arbritary Scale)

P
er

ce
nt

ag
e

of
 q

ue
ui

ng
 a

t t
he

 R
es

ou
rc

e
an

d
P

er
ce

nt
ag

e
dr

op
 in

 th
ro

up
ut

Queuing at resource Throughput

Fig. 4. Demonstration of Slash dot effect at a resource r12 and the corresponding drop in
throughput for processes requiring that resource.

Kleptoparasitic behaviour [14] is observed when an agent frequently refers to the
environment for information regarding resources instead of foraging itself. Also,
there isn’t a change observed in its cooperative strategy, if anything, there is evidence
of decreasing cooperation. Implying that the agent is satisfied getting most of its
information from other agents that have published/shared the information and itself
does not gather information.

3.1.4 Vocalisation/Persistence of Resources:

There are various resources that appear and disappear in the system over the duration
of the simulation. The requests and usage of resources helps reinforce their life in the
simulation. The Fig. 5 below shows a graph indicating the appearance and persistence
of resources during one run of the simulation.

106 A. Umre, I. Wakeman

0
100
200
300
400
500
600
700
800
900

1 3 4 6 7 14 12 11 9 2 17 18 19 10 15 13 16 5 8 20

Resources

Ti
m

e

Fig. 5. Vocalisation/Persistence of resources.

After the emergence of a resource, its life depends upon the reinforcement or fail-
ure. The figure gives an indication of the existence and use of resources at particular
times, and helps hypothesize the prospects of their consumption, which is very help-
ful in evaluating the various strategies being used for sharing information. The
perseverance of some particular strategies in the system gives an indication of the
behaviour of agents to particular situations and also, determines if certain behaviours
recur in agents over time, but without them having the benefit of hindsight.

4 Discussion/Conclusions

Our experiments explore various cooperative/competitive strategies that encompass
most aspects of social behaviour. Mixed strategy models [8], [9] showing the
possibility of freeloaders or lying. Ongoing implementations include scenarios like
modelling trust in the system, altruism, and misinformation/malicious agents. To
show how information sharing models can make novel, quantitative, and testable
predictions concerning social foraging theory, within the application domain of dis-
tributed systems e.g. P2P networks.

The experiments reveal some interesting dynamics of the system with respect to
the information dissemination algorithm. Our main objective has been to keep the
agent imperceptible and its behaviour very simple, and to understand the local dy-
namics of interacting agents that lead to complex global behaviours. We draw our
inspiration for this work from biological social networks, e.g. Ant colonies, Bee colo-
nies, and other relevant theories in behavioural ecology. We are currently developing
formalisations for the current algorithmic approach, so as to do a detailed mathemati-
cal analysis of the underlying theory. Our study hopefully gives insights into certain
kinds of behaviour persistent in the system, which bear some resemblance to biologi-
cal social systems. Especially to areas such as foraging, danger of predation, sharing
information regarding food/nest sites etc, [17], [5], and [16]. Issue of trust and reputa-
tion once incorporated into the simulation should yield some more interesting dynam-
ics. The simulation model discussed should eventually be able to help understand
some of the contexts in which cooperation emerges, is beneficial or not, and to what
extent.

Economics of Cooperation : Social Foraging in Distributed Systems 107

References

1. Caraco and Giraldeau: Social Foraging Theory, Princeton University Press. (2000)
2. Luc-Alain Giraldeau, Thomas Valone et. al.: Potential disadvantages of using socially

acquired information, Phil. Trans. of the Royal Society, London. (2002)
3. Mangel, M.: Dynamic Information in uncertain and changing worlds. J. Theoretical Biology

(1990) 146: 317-332
4. Stephens, D.W.: Variance and the value of information. American Naturalist (1989) 134:

128-140
5. Seeley, T.: The Wisdom of the Hive – The Social Physiology of Honey Bee Colonies,

Harvard University Press, Cambridge (1995)
6. Clark, C.W., and Mangel, M.: The Evolutionary Advantages of Group Foraging. Theoretical

Population Biology, Vol. 30 (1986)
8. Axelrod: The Evolution of Cooperation, Basic Books Inc. (1984)
9. Axelrod: The Complexity of Cooperation, Agent-Based Models of Competition and

Collaboration. Princeton University Press. (1997)
10. Dugatkin: Game Theory and Animal Behaviour, Oxford University Press (1998)
11. Pacala, S.W., Gordon, D.M., Godfray, H.C.J.: Effects of social group size on information

transfer and task allocation. Evolutionary Ecology, (1996) 10, 127-165
12. Hamilton: Altruism and Related Phenomena, Mainly in Social Insects. Annual Review of

Ecology and Systemics (1972) 3:193-232
13. Dall and Johnstone: Managing Uncertainty: Information and insurance under the risk of

starvation. Phil. Trans. Royal Society. London. (2002)
14. Hamilton: Kleptoparasitism and the distribution of unequal competitors. Behavioural

Ecology. Vol. 13, (2001) 2: 260-267
15. Real and Caraco: Risk and Foraging in Stochastic Environments. Annual Review Ecol.

Syst. (1986) 17:371-90
16. Caraco, T., Uetz, G.W., Gillespie, R.G., Giraldeau, Luc-Alain.: Resource Consumption

Variance within and among individual: On coloniality in Spiders. Ecology, (1966) 76(1),
pp. 196-205

17. Franks, N.R., Pratt, S.C., Mallon, E.A., Britton, N.F., Sumpter, D.: Information flow, opin-
ion polling and collective intelligence in house-hunting social insects. Phil. Trans. Royal
Society. London (2002)

18. Beckers, R., Goss, S., Deneubourg, J.L. & Pasteels, J.M.. Colony size, communication and
ant foraging strategy. Psyche 96, 239-256 (1989).

19. Jaffe, K. & Hebling-Beraldo, M. J. Respirometry and the evolution of order: negentropy
criteria applied to the evolution of ants. In Proceedings of the 11th Conference of the
International Union for the Study of Social Insects (Bangalore, India) (ed. G. K. Vereesh, B.
Mallik and C. A. Viraktamath), p. 538. Oxford and IPH Publishing Co., New Delhi (1990).

20. Deneubourg, J. L., Pasteels, J.M. & Verhaeghe, J.C. Probabilistic behaviour in ants: a
strategy of errors? Journal of Theoretical Biology 105, 259-271 (1983).

21. Deneubourg, J. L., Aron, S., Goss, S. & Pasteels, J.M. Error, communication and learning
in ant societies. European Journal of Operations Research 30,168-172 (1987).

22. Weidenmuller, A. & Seeley, T. D. Imprecision in waggle dances of the honeybee (Apis
mellifera) for nearby food sources: error or adaptation. Behavioral Ecology and Sociobiol-
ogy 46, 190-199 (1999).

23. Seeley, T. D. Honey bee colonies are group-level adaptive units. American Naturalist 150,
22-41 (1997).

24. Bonabeau, E. Social insect colonies as complex adaptive systems. Ecosystems 1, 437-443
(1998).

108 A. Umre, I. Wakeman

Computer Vision
and Pattern Recognition

Some Experiments on Corner Tracking for

Robotic Tasks.

Victor Ayala-Ramirez, Cruz A. Longoria-Mendez, and Raul E. Sanchez-Yanez
E-mail:{ayalav, sanchezy}@salamanca.ugto.mx

Universidad de Guanajuato FIMEE
Tampico 912

36730 Salamanca, Gto.
Mexico

Abstract. In this paper, we present a comparison of the performance
of Harris and SUSAN corner detection applied to corner tracking tasks
in robotic vision. We have tested some corner refining algorithms on
both methods and measured their performance when we applied to real
images of a real-time sequence. We conclude that for the Harris method,
a correlation step using an ideal corner model can improve stability in
corner detection. In the other hand, it is better to use SUSAN algorithm
without using the correlation step because it degrades its performance.
We show also successful applications running at about 8 Hz for both
corner detection methods.

1 Introduction

Current approaches for visual feature tracking include corners, blobs and edges
[1]. Nevertheless, there are some unsolved problems in tracking systems; for
example, complex scenes, occlusion problems, moving objects, highlights and
reflections, significant illumination changes and motion blur.

Interest points or salient points are points that possess unique properties in
an image. Salient features can describe unique objects in an image. One of the
most often used features to describe salient point is cornerness property. A corner
is a point with a high curvature in the intensity space that can be detected from
the discontinuities on the neighborhood of a pixel.

Corner tracking has been used for many applications as diverse as robot visual
localization [1], robot homing tasks using omni-directional vision [2], human-
computer interfaces for augmented reality [3][4], scene modelling [5] or traffic
detection [6].

However, its use in outdoor environment has not been intensively tested.
Work to find optimal parameters and performance evaluation of corner tracking
algorithms remain to be done. Our problem is to determine which algorithm
implement in a robotic corner tracking system for indoor and outdoor environ-
ments. Our main application is directed toward characterizing landmarks ro-
bustly along an image sequence acquired by a mobile robot during the execution
of a navigation task.

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 111-120

user
Rectangle

We have compared the Harris and SUSAN corner detection algorithms imple-
mented with some minor refinements. We present the details of our experiments
later in this paper. We have proposed two tests to measure performance of corner
detection algorithms: i)evaluation of corner detection algorithms on benchmark
images and, ii) a stability test. First test is used to find optimal tuning pa-
rameters for the two corner detection algorithms compared in this paper. The
second test proves stability of corner detection when illumination changes are
significant. We also present two sequences where Harris and SUSAN algorithms
perform well in complex environments.

2 Problem formulation

2.1 Harris corner detection

Harris corner detection algorithm was originally developed for robotic applica-
tions[7]. Its goal was to match corner points in stereo image pairs to enable a 3D
reconstruction of the environment. Its work was an improvement of the work by
Moravec [8], who has noted that the difference in intensities of adjacent pixels
in edges and uniform regions of an image are small, but at corners the same
difference is significantly high in all directions.

Computation of the cornerness property in this method is carried out by
convolving a Gaussian mask with the Hessian matrix H of the intensity function
of the image and analyzing the resulting matrix M .

M = e−
u2+v2

2σ2 ⊗ H =
[
α 0
0 β

]
(1)

with ⊗ a convolution operator.
Cornerness R(x,y) of a point (x, y) is then computed as follows:

R(x, y) = det(M) − k · (trace(M))2 = αβ − k(α + β)2 (2)

Interpretation of R(x,y) can be related to the behavior of α and β as follows:

– When α and β are small, we are in an uniform region.
– if α > 0 and β = 0, the point is an edge.
– if both, α and β, are positive numbers, we have found a corner.

2.2 SUSAN corner detection

SUSAN [9] is a corner detection algorithm based in the analysis of the gradient
direction of the intensity in a neighborhood around a point. SUSAN stands
for the Smallest Univalue Segment Assimilating Nucleus. The principle of this
corner detector is to count all the pixels in a circular neighborhood that have an
intensity level similar to the central pixel after smoothing with a Gaussian kernel.
This region is named the USAN (Univalue Segment Assimilating Nucleus). When
the USAN is composed of all the pixels in the vicinity, the region is uniform.

112 V. Ayala, C. Longoria, R. Sanchez

If the USAN is composed of about 50 % of the total pixels, we are in an edge
point. A corner point is present when the USAN only covers less than 25% of
the neighborhood.

2.3 Quality requirements for corner detection algorithms

Main requirements for a corner detection algorithm are [10]:

1. All the true corners should be detected.
2. No false corners should be detected.
3. Corner points should be well localized.
4. Corner detector should be robust with respect to noise.
5. Corner detector should be efficient.

Aspects 1 and 2 are evaluated by testing our implementations using widely
used benchmark test images (Figure 1). Evaluation of points 3 and 4 is done
by performing a stability test for a corner in an image sequence. This sequence
presents a quasi-static image perturbed by illumination noise. Point 5 can be
satisfied by achieving a real-time frame rate for the corner tracking system.

3 Tests and Results

3.1 Parameter tuning for Harris and SUSAN methods.

Harris corner detection method is tuned by choosing a variance σ for the Gaussian
kernel to be convolved with the intensity Hessian matrix. Best results for the
variance parameter of Harris detector when applied to benchmark test images
are shown in Table 1.

SUSAN method for corner detection is tuned by adjusting the similarity
threshold parameter. This parameter controls the area of the pixels belonging
the USAN. Best results for the threshold parameter are also shown in Table 1.

For both methods, a different parameter value is needed for each image. This
value is selected by choosing the optimal value of the parameter in order to
detect all the corners present in the image. Given the different strengths of the
corners, this results in some false corners being detected.

3.2 Test Protocol.

Comparison of corner detectors response to benchmark images Table
1 summarizes the results of the best responses to Harris and SUSAN corner
detectors. First column shows to which image (see Figure 1) the detector is ap-
plied. Second column shows the actual parameter values used to obtain optimal
response. Third column presents the number of corners when the raw algorithm
is applies, i.e., no post-processing steps are performed. The results obtained
when local minima suppression and thresholding step are shown in fourth col-
umn. Graphical results for the SUSAN image when the Harris corner detection

Some Experiments on Corner Tracking for Robotic Tasks 113

(a) Blocks (b) SUSAN

(c) House (d) Lab

Fig. 1. Test images used as benchmarks to tune parameters of the compared corner
detection methods.

method is used and House image processed by a SUSAN corner detector are
shown in Figure 2. Both images were processed using the optimal parameters
shown in Table 1.

We can see that SUSAN detector results in a fewer number of corner points
than the Harris method for all the images. However we have also found that
Harris works better when corner points come from smoother shapes.

Corner stability for image sequences In the corner stability test, we have
applied the corner detection algorithms to a sequence of 1000 frames of a scene
with a fixed target. We have recorded the actual coordinate for the corner, and
we have recorded also the temporal evolution of the position of the detected
corner. We have tested four conditions for both methods: i) without using a
correlation step and non controlled illumination, ii) using a correlation step
and non controlled illumination, iii) without using a correlation step and non

114 V. Ayala, C. Longoria, R. Sanchez

(a) SUSAN image Harris detector
σ = 1.0

(b) House image SUSAN detector
t = 25

Fig. 2. Corner detection response for some benchmark test images using optimal pa-
rameters.

Image Detector Raw Refined
Resp. Resp.

Blocks Harris, σ = 1.0 168 111
SUSAN 36 pixels, t=25.0 65 23

SUSAN Harris, σ = 0.56 168 111
SUSAN 36 pixels, t=25.0 101 36

House Harris, σ = 1.0 143 115
SUSAN 36 pixels, t=25.0 28 19

Lab Harris, σ = 1.0 956 802
SUSAN 36 pixels, t=25.0 268 145

Table 1. Summary of best responses of detectors when applied to benchmark test
images.

controlled illumination plus an illumination perturbation, iv) using a correlation
step and non controlled illumination plus a perturbation. We summarize the
results of these tests in Table 2. For the sake of space we show only the Gaussian
fitting of the corner localization error and the temporal evolution for the cases
iii) and iv) in Figures 3 and 4 respectively.

The Gaussian fitting parameters were obtained using the cftool provided by
Matlab software. Gaussian fitting is of the form:

f(x) = a1 · e−(x−μ
σ)2

(3)

We include also in Table 2 the minimal and maximal errors in corner local-
ization error and the frequency of occurrence along the sequence.

Some Experiments on Corner Tracking for Robotic Tasks 115

Gaussian Minimal Maximal
fitting error error

Detector case μ σ a1 Pixels Frames Pixels Frames

Harris i 10.17 1.321 516 10 520 20 5
ii 7.45 0.678 1106 7 900 18 1
iii 11.55 1.153 510 12 550 20 5
iv 3.76 1.188 835 3 200 8 30

SUSAN i 5.06 0.044 995 5 996 6 1
ii 5.36 0.867 823 5 850 14 10
iii 3.48 0.242 906 3 900 5 100
iii 8.79 1.085 708 4 120 10 550

Table 2. Summary of results for the corner stability test.

0 200 400 600 800 1000
0

5

10

15

20

25

30
Test of stability without using a correlation step

Frames

D
is

ta
nc

e
of

 th
e

re
la

tiv
e

er
ro

r
 (

Pi
xe

ls
)

(a) Harris detector temporal evolution.

11 12 13 14 15 16 17 18 19 20

0

50

100

150

200

250

300

350

400

450

500

Pixels

N
o.

 F
ra

m
es

Interval of bins vs. Frequency
Gaussian fitting

(b) Harris detector Gaussian fitting.

0 200 400 600 800 1000
0

5

10

15

20

25

30
Test of stability without using a correlation step

Frames

D
is

ta
nc

e
of

 th
e

re
la

tiv
e

er
ro

r
 (

Pi
xe

ls
)

(c) SUSAN algorithm temporal evolution.

2 2.5 3 3.5 4 4.5 5 5.5 6

0

100

200

300

400

500

600

700

800

900

Pixels

N
o.

 F
ra

m
es

Interval of bins vs. Frequency
Gaussian fitting

(d) SUSAN algorithm Gaussian fitting

Fig. 3. Corner stability test case iii.

116 V. Ayala, C. Longoria, R. Sanchez

0 200 400 600 800 1000
0

5

10

15

20

25

30
Test of stability using a correlation step

Frames

D
is

ta
nc

e
of

 th
e

re
la

tiv
e

er
ro

r
 (

Pi
xe

ls
)

(a) Harris detector temporal evolution.

4 6 8 10 12 14 16 18

0

100

200

300

400

500

600

700

800

Pixels

N
o.

 F
ra

m
es

Interval of bins vs. Frequency
Gaussian fitting

(b) Harris detector Gaussian fitting.

0 200 400 600 800 1000
0

5

10

15

20

25

30
Test of stability using a correlation step

Frames

D
is

ta
nc

e
of

 th
e

re
la

tiv
e

er
ro

r
 (

Pi
xe

ls
)

(c) SUSAN algorithm temporal evolution.

4 6 8 10 12 14 16 18 20

0

100

200

300

400

500

600

700

Pixels

N
o.

 F
ra

m
es

Interval of bins vs. Frequency
Gaussian fitting

(d) SUSAN algorithm Gaussian fitting

Fig. 4. Corner stability test case iv.

3.3 Applications

We present in figures 5 and 6, two examples of successful corner tracking ap-
plications. Figure 5 presents the tracking of the point of a leaf in an outdoor
environment. As we found in previous section, SUSAN method is more robust
to illumination changes and in fact, we have obtained better performance with
it for this sequence. Figure 6 presents the tracking of the more salient point in a
ball that is moved over a textured floor. For this setup, Harris corner detection
method has performed better. For both tests, maximal operating frequency was
about 8 Hz using a Pentium IV machine running at 2.41 GHz and using 512 MB
of RAM.

Some Experiments on Corner Tracking for Robotic Tasks 117

Fig. 5. Some frames of the tracking of the maximal cornerness point on an outdoor
image sequence using SUSAN method.

4 Conclusions and Perspectives

We have presented two experiments to evaluate the performance of Harris and
SUSAN corner detection algorithms. We have found that SUSAN algorithm
yields better results when the scene includes structured objects. Harris corner
detector performs better for scenes containing unstructured objects. Neverthe-
less, SUSAN algorithm has an error under 12 pixels for a corner stability test
under varying illumination conditions.

We will work toward inclusion of this tracking module in a robotic platform.
More test will be carried out but using images acquired from the robotic vision
system. We will also explore its use for the 3D reconstruction of a panoramic
stereo vision system.

Acknowledgements

This work has been partially funded by the LAFMI project “Concepción de
funciones de percepción y planificación para la navegación topológica de un robot
móvil en ambiente semi-estructurado interior o natural” and by the UG-DINPO
project “Funcionalidades visuales para la navegación de robots móviles”.

118 V. Ayala, C. Longoria, R. Sanchez

Fig. 6. Some frames of the tracking of the maximal saliency point of an object in a
complex indoor environment using Harris corner detection method.

References

1. Brandner, M., Ribo, M., Pinz, A.: State of the art of vision-based self-navigation.
In: Proc. 1st Int. Workshop on Robotic Sensing ROSE’03. (2003)

2. Argyros, A.A., Bekris, K.E., Orphanoudakis, S.C.: Robot homing based on corner
tracking in a sequence of panoramic images. In: Proc. of the IEEE CSC on Com-
puter Vision and pattern Recognition (CVPR’01). Volume 2., IEEE, Computer
Society Press (2001) 3–10

3. Malik, S., McDonald, C., Roth, G.: Hand tracking for interactive pattern-based
augmented reality. In: Proc. Int. Symp. on Mixed and Augmented Reality (IS-
MAR’02). (2002) 117–126

4. Najafi, H., Klinker, G.: Model-based tracking with stereovision for ar. In: Proc.
Int. Symp. on Mixed and Augmented Reality (ISMAR’03). (2003) 313–314

5. Skrypnyk, I., Lowe, D.G.: Scene modelling, recognition and tracking with in-
variant image features. In: Proc. Int. Symp. on Mixed and Augmented Reality
(ISMAR’04). (2004) 110–119

6. Beymer, D., McLauchlan, P., Coifman, B., Malik, J.: A real-time computer vision
system for measuring traffic parameters. In: Proc. of the 1997 Conf. on Computer
Vision and pattern Recognition (CVPR’97). (1997) 495–501

7. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. Fourth
Alvey Vision Conference. (1988) 147–151

8. Moravec, H.: Towards automatic visual avoidance. In: Proc. Int. Joint Conf. on
Artificial Intelligence. (1977) 584

Some Experiments on Corner Tracking for Robotic Tasks 119

9. Smith, S.M., Brady, J.M.: SUSAN - a new approach to low level image processing.
Technical Report TR95SMS1, Defence Research Agency, Franborough, England
(1994)

10. Mokhtarian, F., Suomela, R.: Robust image corner detection through curvature
scale space. IEEE Trans. on Pattern Analysis and machine Intelligence 20 (1998)
1376–1381

120 V. Ayala, C. Longoria, R. Sanchez

Pattern Decomposition and Associative Processing Applied
to Object Identification

Benjamín Cruz, Humberto Sossa and Ricardo Barrón
Centro de Investigación en Computación – IPN

Av. Juan de dios Batís, Esq. Miguel Othón de Mendizábal
Ciudad de México, 07738, México

E-mails: benjamincruz@sagitario.cic.ipn.mx, hsossa@cic.ipn.mx, rbarron@cic.ipn.mx

Abstract. Pattern identification in the presence of noise is a main problem in
pattern recognition. An essential characteristic of the noise acting on a pattern is
its local nature. If a pattern is thus separated into enough sub-patterns, only few of
them will be somehow affected, others will remain intact. In this note we propose
a simple methodology that takes into account this property. A pattern is identified
if enough of its sub-patterns are also identified. Since several patterns can share
some of the sub-patterns, final decision is accomplished by means of a voting
mechanism. Before deciding if a sub-pattern belongs to a pattern, sub-pattern
identification in the presence of noise is done by an associative memory.
Numerical and real examples are given to show the effectiveness of the proposal.

1 Introduction

A main problem in pattern recognition is pattern identification in the presence of noise.
In real situations usually patterns appear distorted by noise and must be identified
despite of this. One approach usually used to identify a pattern from a distorted version
of it, is by means of an associative memory by which we reconstruct the distorted
pattern. Associative memories have been used for pattern recovering for many years
[1-13]. Usually, complete unaltered patterns are first used to build a chosen memory
model. Trained memory models are next used to recover a given pattern, given a
possibly distorted version it. This allows pattern identification.
 One main feature of the noise affecting a pattern is its locality, i.e. the pattern is
affected somehow at specific parts or locations; other parts remain unchanged. In this
paper we take advantage of this situation and exploit it in two ways. In the one hand,
we decompose the pattern into a set of sub-patterns. In the other hand, we make use of
an associative memory specially designed to filter the noise affecting the patterns’ sub-
patterns. The resulting sets of sub-patterns are first used to build a bank of associative
memories. During pattern recall a possibly distorted version of a pattern is first
decomposed into its sub-patterns. Each sub-pattern is presented to its corresponding
memory for noise cleaning. The cleaned sub-pattern is then used to index into a table
for the set patterns sharing it. A simple but efficient voting mechanism allows to finally
deciding the index of the corresponding pattern.
 Lots of models of associative memories have been emerged in the last 40 years,
starting with the Lermatrix of Steinbuch [1], then the Linear Associator of Anderson
[2] and Kohonen [3], and the well-known model proposed by Hopfield in 1982, the
Hopfield Memory [5]. For their operation, all of these models use the same algebraic
structure. In the 90’s appeared the so-called Morphological Associative Memories

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 121-130

(MAMS) [6] and [7]. While the classic memories found their operation on
multiplications and additions, the MAMS do it in the min and max operations used in
Mathematical Morphology. Several of these models, especially the morphological
models are very efficient to recall patterns corrupted either with additive noise or
subtractive noise. To overcome this problem, MAMS memories and theirs variants
make use of the so-called kernel approach [6]. Kernels for MAMS are however
difficult to find [9]. Additionally, if new patterns have to be added to the learning set
the kernels need to be recomputed again. In [11], the authors describe a memory model
able to handle mixed noise by means of the well-known median operator. Median
operation is however time consuming as know. In this paper we show how by
decomposing a pattern into its sub-patterns, we can avoid the use of kernels and the
median operator. We give numerical and realistic examples where the effectiveness of
the proposal is tested.

2 Basics About Associative Memories

An associative memory as defined in [13] is an input-output system able to associate an
input pattern with an output pattern as follow: M , with a and b ,a b
respectively the input and output patterns vectors. Each input vector forms an
association with its corresponding output vector. An association between input pattern

 and output pattern is denoted by . For a positive integer, the

corresponding association will be . Associative memory M is represented by

a matrix whose ij-th component is [2]. M is generated from a finite a priori set of
known associations, known as fundamental set of associ tion or simply fundamental
set (FS) [13]. If k is an index, this FS is represented as:

a b (,a b) k

a

(,k ka b

ijm
)

pbk ,1, k,ak , with p
the cardinality of the set. The patterns integrating a FS are called fundamental patterns
[13]. The nature of the FS provides an important judgment for associative
classification. If for , it holds thatpk ,1 kbka , then that memory is auto-
associative, otherwise it is hetero-associative [13].

Fundamental patterns could be distorted with noise. A distorted version of a
pattern will be denoted as . If when presenting to an associative memory M a
fundamental pattern, M responds with the correct pattern, we say that M presents
perfect recall. If for all patterns of a given FS, perfect recall is obtained, M is said to
present perfect recall.

a a

3 Idea of Solution

As already mentioned, the proposal is based on the locality of the noise affecting the
pattern, i.e. when the object is decomposed into several parts, some of them will appear
more or less affected by noise, some others will not. From these less altered and the
unaltered parts is that the whole object is identified. For example in Figure 1(a) we
have an image of an object for which a numerical representation (a pattern) has been
obtained. In Figure 1(b), we have the same image but distorted with some noise, this of

122 B. Cruz, H. Sossa, R. Barrón

course affects also its numerical representation. Finally, in Figure 1(c) it is shown the
same pattern but decomposed into several parts. By obtaining these set of parts (sub-
patterns), as can be appreciated some sub-patterns appear altered, some others no.
From these unaltered sub-patterns is that the object can be identified.

Figure 1. (a) An object and its numerical representation. (b) The same object altered by
noise and its corresponding numerical representation altered also by the noise. (c) The
corresponding pattern decomposed into parts (sub-patterns).

4 Basic Definitions

The steps composing the proposed methodology to recognize an object from its parts
(sub-patterns) are explained next. For this let us have the following definitions:

Definition 2.1. Let B a pattern of an object O obtained somehow (for example as an
image-vector by the standard row scanning method or a feature vector). A sub-pattern

 of object is a pattern obtained as b O B but from a part of .O

We have already mentioned that to get the sub-patterns of an object it is necessary to
divide this object into parts and obtain their corresponding patterns. We have thus the
following definition:

Definition 2.2. Let a set of sub-patterns of an object, represented as row vectors of
dimension denoted by b

m
n mkk ,1, . The matrix B of dimensions

containing all of these patterns as its rows is called base pattern.
nm

Definition 2.3. The set of all matricesq kB is called the base set of matrices or

simply the base set, and it is represented as: qkk ,1|B , with the number of
patterns or objects.

q

Pattern Decomposition and Associative Processing Applied to Object Identification 123

In what follows, for notation purposes b represents the -th sub-pattern of the

-th object, with and i

i
k k

i mkk ,1, qi ,1, .

5 The Methodology

The proposal is composed of two main stages: 1) memory training and 2) object
recognition. During training the chosen associative memories are built. Also the so-
called voting matrix is build. During testing, the objects’ sub-patterns are presented to
the already trained memories for identification porpoises.

5.1 Learning phase

This phase is composed of two main steps as follows:

Step 1: For each , take the b and build associative memoryk i
k

kM . We can select
any among the existing different models (see section 6).

Step 2: Taking into account that several objects can share a given sub-pattern, we build
a matrix V (voting matrix) of dimensions mq , with q the number of objects and m
the number of sub-patterns. Matrix V tells us exactly which sub-pattern is in which
object. First row of V is reserved for first object, second row for the second object,
and so on. To build V , we first fill it of 0’s, i.e. mjqiv ji ,1;,1,0, . We then

convert each sub-pattern b of each base pattern to a decimal equivalent number,

and assign this number to component v of V . This would mean that sub-pattern b

belongs to base pattern . This completes the learning stage.

i
k

iB

iB

k,i
i
k

5.2 Recalling phase

We have two cases. First case is related with the recalling of a pattern of the FSP,
second case, in the contrary, is focused on the recalling of a pattern of the same FSP
but from a distorted version of it.

Case 1: Recalling a pattern of the FSP. For each base pattern of the FSP: kB

Step 1: We begin by building a v ting vector and filling it by 0’s as followso
000 21 qzzzZ .

Step 2: Now, for a given base pattern (it can be anyone of them), for each of its

sub-patterns , we operate it with the corresponding associative memory

, convert it to its decimal equivalent, let say . We then look for all the

iB
i
kb

mkM k ,1, d

124 B. Cruz, H. Sossa, R. Barrón

appearances of in matrix V at column , and update the corresponding
component of vector

d k
iz Z as follows: For i q,1 do dvifzz kiii ,1 . We

repeat this process for each sub-pattern of .iB

zi i,j max

i

iB

0001 qzzz

i
kb iB

k, d
k

Z q,1
if

zi i,max

Step 3: We finally get the index of the corresponding pattern as:

q
i

,1arg (1)

The whole process is repeated for each .B

Case 2: Recalling a pattern of the FSP from a distorted version of it. Given a

distorted version of one the patterns of the FSP:

Step 1: Again, we begin by defining 2Z .

Step 2: For each sub-pattern of , we operate it with the corresponding

associative memory , convert it to its decimal equivalent, let say . We
then look for all the appearances of in matrix V at column , and update the
corresponding component of vector

mM k ,1

iz
d

as follows: For i do

. We repeat this process for each base pattern. dvzz kiii ,1

Step 3: Get the index of the corresponding pattern as:

qj
i

,1arg (2)

5.3 Variations

Instead of using the rows of binary patterns to define the base vectors we can use their
columns or diagonals and follow the same procedure to learn and recall patterns. The
idea is to decompose the pattern into sub-patterns for recalling.

6 Numerical Examples

In this section we provide some numerical examples to better understand the
functioning of the proposal. In the next section we give some real examples where we
test the effectiveness of the proposal.

Example 6.1. Let be the following FSP, representing the five vowels of the Latin
Alphabet (A, E, I, O and U; 1 is for the information, 0 is for background):

Pattern Decomposition and Associative Processing Applied to Object Identification 125

101
111
101
101
010

1B
, ,

B
, ,

111
001
011
001
111

2B

111
010
010
010
111

3

111
101
101
101
111

4B

111
101
101
101
101

5B

Learning phase:

Step 1: Memory construction. We can use any associative memory. Let us use W
associative memory reported in [6] useful to handle with subtractive noise. Just to
remember, W memories make use of arithmetic subtraction between elements and min
() operator for memory building. For pattern recall they use arithmetic addition and
the max () operator. For the details refer to [6]. Because each pattern is composed of
five sub-patterns, and each of these sub-patterns is of size 3, we have then the next five
memories:

010
101

010
1W

, , , , .

011
101

010
2W

011
101

010
3W

011
101

010
4W

000
101

000
5W

For the details of how W to W were obtained, the interested reader is refereed to
[6].

1 5

Step 2: Construction of matrix V . As explained in section 5.1, we proceed with each
row of V :

For pattern 1B and first sub-pattern 0101
1b , 2d , thus . For

pattern

211v
1B and second base vector 1011

2b , 5d , thus v . If we

continue we this procedure for the remaining base patterns of

512
1B and the sub-patterns

of base patterns 2B , 3B , 4B and 5B :

75555
75557
72227
74747
57552

V
.

This ends the learning stage.

Recalling phase:

Example 6.2. Recalling a pattern of the FSP. Let us take the first fundamental pattern
1B of example 6.1. Let us proceed:

126 B. Cruz, H. Sossa, R. Barrón

Step 1: As discussed in section 5.2: 00000Z .

Step 2: For pattern recall a W memory uses arithmetic addition between components
and the max () operator. For the details, refer to [6]. Now for each b of , we
have:

1
k

1B

For :0101
1b

0
1
0

000
111

000

001100
011001

001100

0
1
0

010
101

010
1
1

1 bW
.

102010 . We look for the appearances of 2 now into first column of V . As can be

seen it appears only in the element 211v of V , so: 0001 0Z .

For :1011
2b

1
0
1

110
000
111

100111
110011

100110

1
0
1

011
101

010
1
2

2 bW
.

105101

02Z

. We look for the appearances of 5 now into second column of V . As can

be seen it appears in the first, fourth and fifth positions of V , so:
.110

If we continue this way, it can be easily shown that 22005Z .

Step 3: We finally get the index of the corresponding pattern as:
. Thus the desired pattern is pattern 12,2,0,0,5maxarg

i
j 1B , that is the

pattern we were looking for.

Example 5.3. Recalling a pattern of the FSP given a distorted version of it. Let us now
take the following distorting version of fundamental pattern 1B :

101
111
101
011
000

1B
.

You can observe that in this case sub-patterns b and b appear distorted. The
other three are not altered. Proceeding as before:

1
1

1
2

Step 1: As discussed in section 5.2: 00000Z .

Step 2: Now for each b of , we have: 1
k

1B

Pattern Decomposition and Associative Processing Applied to Object Identification 127

For 0001
1b :

0
0
0

010
101

010

000100
010001

000100

0
0
0

010
101

010
1
1

1 bW
.

100000 . We look for the appearances of 0 now into first column of V . As can be

seen, it does not match any element of V , so: 00000Z .

For
:0111

2b

0
1
1

000
110

001

001111
011011

001110

0
1
1

011
101

010
1
2

2 bW
.

106110 . We look for the appearances of 6 into second column of V . As can be

seen, again it does not match any element of V , so: 0000 0Z .

If we continue this way, it can be easily shown that 11003Z .

Step 3: We finally get the index of the corresponding pattern as:
. Again the recalled index coincides with the index of the

desired pattern.

11,1,0,0,3maxarg
i

j

7 Results with Real Patterns

In this section the proposed methodology is tested with more realistic patterns. For this,
we make use of the twelve patterns shown in Figure 2. Tests were performed with four
associative memories: morphological associative memories M and W [6], and

associative memories M and W [8]. Just to remember, M memories are good for
additive noise and W memories are good for subtractive noise. For the details about the
operation of both memories, the interested readers is refereed to [6] and [8].

Figure 3 shows the recalling results. As you can appreciate, 100 percent of perfect
recall was obtained with min (W) memories morphological and from 5 to 15% of
noise. From then on, the performance falls little by little. However as can be seen W
memories show a better performance than M memories.

8 Conclusions and Ongoing Research

In this note we have described a simple but effective methodology for the recalling of
patterns distorted by mixed noise. Instead of adopting the kernel method used in [6], or
the median recently proposed in [11], we prefer to decompose each pattern into a set of
sub-patterns. This way we can take advantage of the locality of affecting noise. During
memory construction, sub-patterns sets are first used to build a set of memories. Next,
during pattern recall a given pattern, possibly distorted by noise is also decomposed
into its set of patterns. Each sub-pattern is operated by its corresponding memory. The

128 B. Cruz, H. Sossa, R. Barrón

filtered result is then used to recover the pattern to which the sub-pattern belongs.
Finally, the index of the pattern is recovered by simple voting mechanism.

 (a) 0% (b) 5% (c) 10% (d) 15% (e) 20% (f) 25% (g) 30%

Figure 2. (a) Patterns used to test the proposal. Their size is 31x37 pixels. For testing
these patterns were distorted by mixed noise at percentages of: (b) 5%, (c) 10%, (d)
15%, (e) 20%, (f) 25% and (g) 30% percent. One version of each letter is used.

Nowadays, we are looking for the formal propositions (Lemmas and Theorems
and Corollaries) that specify the conditions under which the proposed methodology can
be used to perfectly recover a given pattern from a distorted version of it. We are also
looking for more real problems where the proposal can find applicability.

Acknowledgements. This work was economically supported by CGPI-IPN under
grants 20050156 and CONACYT by means of grant 46805. H. Sossa specially thanks
COTEPABE-IPN, CONACYT (Dirección de Asuntos Internacionales) and DAAD
(Deutscher Akademischer Austauschdienst) for the economical support granted during
research stay at Friedrich-Schiller University, Jena, Germany.

Pattern Decomposition and Associative Processing Applied to Object Identification 129

Results

0%

20%

40%

60%

80%

100%

0% 5% 10% 15% 20% 25% 30%

Porcentaje de Ruido

Pe
rc

en
ta

ge
 o

f R
ec

al
l

MAM Min MAM Max AlfaBeta V AlfaBeta

Figure 3. Recalling results obtained by applying the proposed methodology to the set of
patterns shown in Fig. 2.

References

1. K. Steinbuch (1961). die Lernmatrix, Kyberneitk C-1,1,26-45.
2. J. Anderson (1972). A simple neural network generating an interactive memory,

Mathematical Biosciences C-14, 197-220.
3. T. Kohonen (1972). Correlation matrix memories, IEEE Transactions Computers C-21, 4,

444-445.
4. G. Palm (1982). Neural Assemblies. An alternative approach to artificial intelligence.

Studies of the brain function. Springer Verlag.
5. J. Hopfield (1982). Neural Network and Physicals systems with emergent collective

computational abilities. Proceedings of the National Academy of Sciences, C-79, 2554-
2558.

6. G. X. Ritter qt al. (1998). Morphological associative memories, IEEE Transactions on
Neural Networks, C-9,281-293.

7. G. X. Ritter et al. (1999). Morphological bi-directional associative memories, Neural
Networks, 12:851-867. .

8. C. Yáñez (2002). Associative Memories based on Order Relations and Binary Operators (In
Spanish), PhD Thesis, Center for Computing Research-IPN.

9. G. X. Ritter et al. (2003), Reconstruction of patterns from noisy inputs using morphological
associative memories. International Journal of Mathematical Imaging and Vision, 19(2), pp.
95-111.

10. H. Sossa et al. (2004). Extended Associative Memories for Recalling Gray Level Patterns.
Lecture Notes on Computer Science 3287. Springer Verlag. Pp. 187-194.

11. H. Sossa et al. (2004). New Associative Memories to Recall Real-Valued Patterns. LNCS
3287. Springer Verlag. Pp. 195-202.

12. H. Sossa et al. (2005). Associative gray-level pattern processing using binary decomposition
and a-b memories. Neural Processing Letters 22:85-111.

13. M. H. Hassouon (1993). Associated neural memories. Theory and implementation. Oxford
University Press.

130 B. Cruz, H. Sossa, R. Barrón

Object Classification Based on Associative Memories and
Midpoint Operator

Roberto A. Vázquez, Humberto Sossa and Ricardo Barrón
Centro de Investigación en Computación – IPN

Av. Juan de Dios Batíz, esquina con Miguel Otón de Mendizábal
Ciudad de México, 07738, México.

Contact: robertov@sagitario.cic.ipn.mx , hsossa@cic.ipn.mx, rbarron@cic.ipn.mx

Abstract. In this paper we describe a way to build an associative memory for object
classification. The operation of the new architecture is based on the functioning of
the well-know mid-point operator widely used in signal processing. The proposal is
an alternative to the one described in [H. Sossa, R. Barrón, R. A. Vázquez. Real-
Valued Pattern Classification based on Extended Associative Memory. In Proc.
Fifth Mexican Conference on Computer Science (ENC2004), 213-219 (2004). The
proposal is tested with image of realistic objects.

1 Introduction

One important problem in computer vision is object classification. The solution to this
problem would strongly influence the functionality of many systems such us: content-
based image retrieval systems, video indexing systems, automatic robot guidance systems,
object tracking systems, object manipulation systems, and so on. Many approaches to
solve this problem have been proposed in the literature: the well-known statistical ap-
proach, the structural approach and the neural approach. The idea of using associative
memories to solve the object classification problem is relative new. Refer for example to
[1-7].

In this paper we describe an associative model by which we can get the class index of
an object given a description of it terms of some its features. We propose a new way to
build an associative memory combining well-known set operations of min and max and
midpoint operator well-used in signal processing. We show several examples with nu-
merical a real patterns where the effectiveness of the proposal is tested.

Rest of paper is organized as follows. In section 2, the proposal is described in detail.
In section 3, a numerical example to better follow the functioning of the proposal is given.
In section 4, experimental results with images of realistic objects are provides, while in
section 5, conclusions and directions for further research are given.

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 131-140

2 The Proposal

Let a set of p fundamental couples (SFC), composed by
a pattern and its corresponding class-index. The problem is to build an operator M, using
this SFC, that allows to classify the patterns into their classes, i.e. for
=1,…, p and that even in the presence of distortions it classifies them adequately, i.e.

mixix np ,,1,,, 1

ix

ixM

~M , where x~ is an altered version of . A first approach in this direction
was presented in [7]. Operator

x
 is chosen such that when operating vector with ma-

trix M, produces as result the corresponding index class of pattern .
x

x
Matrix M is build in terms of a function as follows:

m

1

M (1)

where each i represents the i-th row of a matrix M and this function is a codification of
all patterns belonging to the class i.

Function can take several forms. In this paper we propose well-known mid-point to
build function .

2.1 Mid-point operator

Arithmetic averaging is widely used in pattern recognition to perform Euclidean distance
classification. Arithmetic averaging allows obtaining representative vectors of different
patterns to be classified. Representative vectors computed this way are useful only when
standard deviation of all patterns belonging to the class i, is low.

Mid-point operator usually used in signal filtering could be an alternative to get also
representative vectors for each class. We preferred to use mid-point operator because as
we will next see it allows better classification results than arithmetic average operator and
other known operators.

Mid-point operation works as follows: Given a set of p values: pfff 21 :

2
1 p

mid

ff
f . (2)

132 R. Vázquez, H. Sossa, R. Barrón

With respect to average operator, mid-point value is always between values

and , while ’s position will depend on the distribution of values: , de-

fined as

midf 1f

pf avef pff ,1

m

im
1

iave ff
1

.

For the case of vectors, mid-point operator takes the form:

2

j j
j i
i

i (3)

where
j

i

p
j
i x ,

1
 (4)

and

j
i

p
j
i x ,

1
 (5)

i stands for the object’s class and goes from 0 to , the size of the pattern. As you
can appreciate, the idea is to build a hyper-box enclosing patterns belonging to class i, by
means of max “ ” and min “

j n

” set operators.

Example 1. Suppose we want to build matrix M from the following set of associa-
tions:

mid

pattern class pattern class pattern class
(1.0, 1.0, 1.0) 1 (4.0, 4.0, 4.0) 2 (10.0, 9.0, 10.0) 3
(1.0, 2.0, 1.0) 1 (4.0, 4.0, 5.0) 2 (9.0, 9.0, 10.0) 3
(2.0, 1.0, 1.0) 1 (4.0, 5.0, 5.0) 2 (10.0, 10.0, 10.0) 3
(1.0, 1.0, 2.0) 1 (5.0, 4.0, 4.0) 2 (10.0, 11.0, 11.0) 3
(2.0, 2.0, 2.0) 1 (5.0, 4.0, 5.0) 2 (10.0, 9.0, 11.0) 3

According to equations (4) and (5): , and

. Also, , and . Thus

, and . Finally:

)2,2,2(1

)4,4,4(
,0.10,5.9(3

)5,5,5(2

)10,9,9(3

)5.
)11,11,10(3

5.1,5.1,5.1(1

)1,1,1(1

5.4,5.4,5.4(
2

10))2

Object Classification Based on Associative Memories and Midpoint Operator 133

5.100.105.9
5.45.45.4
5.15.15.1

midM .

An advantage of mid-point operator over other operators to build matrix M is that the
distance of representative to farthest class elements is always the same as can be appreci-
ated in Figure 1 (a). For other operators such the well-known arithmetic average operator,
representative vector is not always at the center (Figure 1(b)).

Other adavantages of mid-point operator over other operators are the following:

1. It is less expensive to compute a min an a max than adding up all vectors
associatedd to a class as for example with arithmetic average operator.

2. It is less expensive to compute a min an a max than to order a vector for the case
of median operator.

3. It is less expensive to compute a min an a max than to compute inverse matrices
and probabilities as for example with Bayesssian classifier.

(a) (b)

Figure 1. (a) Representative pattern obtained by means of mid-point operator is always at
the center between farthest class elements. (b) Representative vector obtained by means
of arithmetic average operator is not always at central position. This depends on distribu-
tion values of class elements.

2.2 Pattern classification

Pattern classification is performed as follows. Given a pattern , not necessarily
one of the already used to build matrix , class to which x is assigned is given by

nx
midM

jlj

n

j

m

ll
xmxi

11
argM (6)

134 R. Vázquez, H. Sossa, R. Barrón

Operators and max min execute morphological operations on the difference
of the absolute values of the element of and the components of pattern

to be classified. Thus

ljm midM jx x

jlj xm
n

j 1
 is the metric of the max between row l of and

pattern , thus it can be written as

midM

x jlj xmm
1

n

jl)x,(d , row of M .lm mid

From the point of view of this metric, pattern classification consists on assigning pat-
tern to the class which index of row of is the nearest. x midM

Conditions for correct recall of either a pattern of the FS or from an altered version of
one its patterns are given as:

Theorem 1 [7]. Let i ix class i
d d(,)x and i id(,) dx x iR : hyper-boxes

centered at i and semi-side midi ,...,1, . If jiji ddd ,max2),(, then:

i) jim,ji,1Ø,ji RR .

ii) iRx implies d(i j,) d(,)x x .

iii) jRx implies d(j i,) d(,)x x .

3 Numerical Example

To better understand the idea of the functioning of the proposal, let us study the following
numerical example.

3.1 Classification of a pattern belonging to the training set

From example 1, let us take pattern that we know it belong to class 3,
and let us verify that it is correctly classified. By applying equation 6, we have:

)0.11,0.9,0.10(

5.95.9,5.7,5.8max0.115.1,0.95.1,0.105.1max:1l

5.65.6,5.4,5.5max0.115.4,0.95.4,0.105.4max:2l

0.15.0,0.1,5.0max0.115.10,0.90.10,0.105.9max:3l

Object Classification Based on Associative Memories and Midpoint Operator 135

Thus i .30.1arg0.1,5.6,5.9arg
3

1ll

Then the pattern (is assigned to class 3.)0.11,0.9,0.10

3.2 Classification of a noisy pattern

From example 1, let us now take distorted version of pattern
 belonging to class 3. Let us verify that in presence of noise, it is as-

signed to class 3.

)5.11,5.10,3.9(
)0.11,0.9,0.10(

0.100.10,0.9,8.7max5.115.1,5.105.1,3.95.1max:1l

0.70.7,0.6,8.4max5.115.4,5.105.4,3.95.4max:2l

0.10.1,5.0,2.0max5.115.10,5.100.10,3.95.9max:3l

Thus i .30.1arg0.1,0.7,0.10arg
3

1ll

Then the pattern (is assigned to class 3.)5.11,5.10,3.9

4 Experimental Results

In this section, the proposal is tested with the set of realistic objects shown in Figure 2.
Objects were not directly recognized by their images but instead from invariant descrip-
tions of them. With these invariant descriptions matrix is built. Twenty images of
each object in different positions, translations and scaled changes were used to get the in-
variant descriptions.

midM

 (a) (b) (c) (d) (e)

Figure 2. The five objects used in the experiments. (a) A bolt. (b) A washer. (c) An eyebolt.
(d) A hook. (e) A dovetail.

136 R. Vázquez, H. Sossa, R. Barrón

4.1 Training phase

To each image of the 20 images of each object a standard thresholder [8] was applied to
get its binary version. Small spurious regions from each image were eliminated by means
of standard size filter [9]. Next, to each of the 20 images of each object (class) seven well-
known Hu geometric moments invariant to translations, rotations and scale changes were
computed [10]. After applying methodology described in Section 2, matrix is: midM

94.1520.1982.4566.855.20190.02475.0
0118.01565.00831.02097.07944.06009.14309.1

0015.00394.00088.00730.01847.02895.07092.0
146.11093.21423.71428.1647.7572.81900.0

647.80011.0596.10028.00071.01598.04394.0

EEEEE

EEEEEE
EE

midM

4.2 Classification

Three sets of images were used to test the efficiency of proposal. A comparison with oth-
ers proposals was also performed. First set of consisted of 100 images (20 for each of the
five objects) different from those used to get matrix . Set number two consisted on
other 100 images (20 for each five objects) but projectively deformed. One image of each
object is shown in Figure 3, where you can easily appreciate the deformation introduced
to the objects. Finally, set number three consisted on other 100 images of five objects (20
for each object) different of those used to get matrix M . Figure 4 shows one image of
each object. The idea is to verify to which class the object assigned by the classifier.

midM

mid

 (a) (b) (c) (d) (e)

Figure 3. First image of each object projectively deformed to test performance of proposal.
(a) A bolt. (b) A washer. (c) An eyebolt. (d) A hook. (e) A dovetail.

With the first set of images the associative memory built by means of mid-point opera-
tor provided 100% of classification. All objects were put in their corresponding class.
Thus, performance of proposal was of 100%.

With second set of images, consisting of deformed objects, proposal provided also
100% of efficiency. Again, all objects were correctly sent to their corresponding classes.

Object Classification Based on Associative Memories and Midpoint Operator 137

Figure 4. First image of each object not belonging to the classes of objects to test pro-
posal. (a) Wood bolt. (b) Hook with thread. (c) Open eyebolt. (d) Key. (e) Open S.

Bolt Washer Eyebolt Hook Dovetail
Wood bolt - - - 100% -
Hook with thread - - - 100% -
Open eyebolt - - 45% 55% -
Key 25% - - 75% -
Open S - - 100% - -

Table 1. Percentage of classification for set number three when proposal is applied.

promM medianM Euclidean Bayesian
midM

Bolt 100% 90% 100% 100% 100%
Washer 100% 100% 100% 100% 100%
Eyebolt 100% 100% 100% 100% 100%
Hook 100% 95% 100% 100% 100%

Dovetail 100% 75% 100% 100% 100%

Table 2. Comparative classification percentages with respect to other classification
schemes when first group of objects is used.

promM medianM Euclidean Bayesian
midM

Bolt 100% 100% 100% 100% 100%
Washer 100% 100% 100% 80% 100%
Eyebolt 100% 70% 90% 90% 100%
Hook 100% 50% 100% 100% 100%

Dovetail 100% 90% 100% 70% 100%

Table 3. Comparative classification percentages with respect to other classification
schemes when second group of objects is used.

For third set of images, Table 1 summarizes the classification results. From this table
you can appreciate that in general, the objects were associated to the classes of more simi-
lar objects already learned. This experiment was only performed to verify that the pro-
posal sends unlearned objects to their most similar object classes.

138 R. Vázquez, H. Sossa, R. Barrón

Compared to other recently published approaches [7] and classical approaches (Euclid-
ean and Bayesian approach), as can be appreciated in Tables 2 and 3, proposal offers bet-
ter or competitive classification results, with the advantages already mentioned in Section
2.1.

5 Conclusions and Ongoing Research

In this paper, we have proposed a very simple way to build an associative memory based
on mid-point operator. It uses min and max set operations to build memory. Proposal has
been tested in different scenarios with images of real objects represented by their moment
invariants. Results obtained with proposal are comparable and in some cases better than
other proposals as shown in Section 4.

One thing that can be done to probably improve the performance of the proposal is to
normalize the values of the invariants so that each feature has the same range of values.

One main drawback of mid-point operator is the presence of outliers in the data. This
question will be faced in future works.

Nowadays, we are testing others ways to build function , especially when the values
of are so close and do not satisfy Theorem 1.

Acknowledgements. This work was economically supported by CGPI-IPN under grants
20050156 and CONACYT by means of grant 46805. H. Sossa specially thanks
COTEPABE-IPN, CONACYT (Dirección de Asuntos Internacionales) and DAAD
(Deutscher Akademischer Austauschdienst) for the economical support granted during re-
search stay at Friedrich-Schiller University, Jena, Germany.

References

1. K. Steinbuch (1961). Die Lernmatrix. Kibernetik, 1(1):26-45.
2. T. Kohonen (1972). Correlation matrix memories. IEEE Transactions on Computes,

21(4):353-359.
3. J. Hopfield (1982). Neural networks and physical system with emergent collective

computational abilities. Proceedings of tha National Academy of Sciences,
79:2554-2558.

4. S. Bandyopadhyay and A. K. Datta (1996). A novel neural hetero-associative mem-
ory model for pattern recognition. Pattern Recognition, 29(5):789-795.

5. G. X. Ritter et al. (1998). Morphological associative memories. IEEE Transaction
on Neural Networks, 9:281-293.

6. F. Galindo (1998). Matrices Asociativas. Científica, 2(8):17-21.

Object Classification Based on Associative Memories and Midpoint Operator 139

7. H. Sossa, R. Barrón, R. A. Vázquez (2004). Real-Valued Pattern Classification
based on Extended Associative Memory. In proceedings of Fifth Mexican Confer-
ence on Computer Science (ENC2004), IEEE Computer Society 213-219.

8. N. Otsu. A threshold selection method from gray-level histograms. IEEE Transac-
tions on SMC, 9(1):62-66 (1979).

9. R. Jain et al. Machine Vision. McGraw-Hill. 1995, pp. 47-48.
10. M. K. Hu. Visual pattern recognition by moment invariants. IRE Transactions on

Information Theory, 8:179-187 (1962).

140 R. Vázquez, H. Sossa, R. Barrón

Associative Processing Applied to Word Reconstruction in
the Presence of Letter Scrambling

Humberto Sossa, Ricardo Barrón and Benjamín Torres
Centro de Investigación en Computación-IPN

Av. Juan de Dios Bátiz, esquina con Miguel Othón de Mendizábal
Mexico City, 07738. MEXICO

E-mails: hsossa@cic.ipn.mx, rbarron@cic.ipn.mx, benjamincruz@sagitario.cic.ipn.mx

Abstract. In this note we describe how an associative memory can be applied to
restore a word to its original “position” given a permutation of its letters. The idea
is to first memorize a set of original words with different number of letters. Then
the issue is to find the correct word given a permutation of its letters. We provide
the formal conditions under which the proposal can be used to perfectly restore
the desired word. We also give several examples to show the effectiveness of the
proposal.

1 Introduction

A very well known word game is the following: Suppose we are given a set of wS p
different words of different cardinality piwC i ,,2,1, (by cardinality we mean

the number of letters of word). From this set, at random, we have a word but
with its letters scrambled. After scrambling, some of the letters of the words will
remain in their original positions, but some others not. The issue is to find the
corresponding original word.

iw iw

We humans do have a notable capacity to solve problems like this by iteratively
exchanging the positions of the scrambled letters and making guesses. An exhaustive
rearranging of all possible combinations would allow us to sooner or later find the
searched word. By taking into account the orthographical rules of forming words
would reduce the searching space. When the number of words, p , grows, the
complexity of searching also grows.

Associative memories have been used for years to recover patterns from the
unaltered or altered patterns keys. See for example [1-9]. In this work we propose to
use an associative memory to restore a given word given a permutation of its letters.

2 Basics About Associative Memories

As defined by several researchers, an associative memory, denoted as M is a device
with the capacity to relate input patterns and output patterns: , with x
and y, respectively the input and output patterns vectors. Each input vector forms an
association with a corresponding output vector.

yMx

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 141-150

An associative memory M is represented by a matrix whose ij-th component is
. Matrix M is generated from a finite a priori set of known associations, known as

the fundamental set of associations, or simply t e fundamental set (FS). If is an
index, the fundamental set is represented as:

ijm
h

p,,2,1|,yx with p the
cardinality of the set. Patterns that form the fundamental set are called fundamental
patterns.

If it holds that p,2,1yx , then M is auto-associative, otherwise
it is hetero-associative. A distorted version of a pattern x to be recalled will be denoted
as x~ . If when presenting a distorted version of x withw pw ,,2,1 to an
associative memory M, then it happens that the output corresponds exactly to the
associated pattern , we say that recalling is robust.wy

3 Basics of Median Associative Memories

Median associative memories (MEDMEMs) first proposed in [9], have proven to be
very powerful tools to recover patterns from distorted versions of their corresponding
keys. Two associative memories are fully described in [9]. Due to space limitations,
only hetero-associative memories are described. Auto-associative memories can be
obtained simply by doing p,2,1yx . Let us designate Hetero-
Associative Median Memories as HAM-memories.

3.1 Memory construction

Two steps are required to build the HAM-memory. Let nZx and two
vectors:

mZy

Step 1: For each p,,2,1 , from each couple yx , build matrix: M as:

nmnmmm

n

n

xyxyxy

xyxyxy
xyxyxy

,,,

,,,
,,,

21

22212

12111

M (1)

Step 2: Apply the median operator to the matrices obtained in Step 1 to get matrix
as follows:

M

MmedM
p

1
. (2)

The ij-th component M is given as follows:

142 H. Sossa, R. Barrón, B. Torres

ji

p

ij xym ,
1

med . (3)

3.2 Pattern recall

We have two cases:
Case 1: Recalling of a fundamental pattern. A pattern , withwx pw ,,2,1 is
presented to the memory M and the following operation is done:

wxM . (4)

The result is a column vector of dimension n, with i-th component given as:

w
jij

n

ji
w xmx ,

1
medM . (5)

Case 2: Recalling of a pattern from an altered version of it. A pattern x~ (altered
version of a pattern is presented to the hetero-associative memory M and the
following operation is done:

wx

xM ~ . (6)

Again, the result is a column vector of dimension n, with i-th component given as:

jij

n

ji xm ~,~
1

medxM . (7)

Operators and might be chosen among those already proposed in the literature. In
this paper we adopt operators and used in [5]. Operators and are defined as
follows:

yxyx, (8.a)
yxyx, (8.b)

Sufficient conditions, for perfect recall of a pattern of the FS or from an altered
version of them, according to [9] follow:

Proposition 1 [9]. Let p,,2,1|,yx with nRx , the

fundamental set of an HAM-memory M and let

mRy
y,x

p

 an arbitrary fundamental

couple with ,,1 . If med ,0
1 ij

n

j
i ,1 m, , ji xy ,ijij m then

mii 1,yixM .

Corollary 1 [9]. Let p,,2,1|,yx , nRx
,,1
, . A HAM-

median memory M has perfect recall if for all

mRy
p , MM where

Associative Processing Applied to Word Reconstruction in the Presence... 143

txyM is the associated partial matrix to the fundamental couple yx ,
and p is the number of couples.

,0
1 j

n

j
med

y

yy ˆ

Proposition 2 [9]. Let p,,2,1|,yx , nRx , a FS with

perfect recall. Let a pattern of mixed noise. A HAM-median memory M has
perfect recall in the presence of mixed noise if this noise is of median zero, this is if

.

mRy
nR

3.3 Case of a general fundamental set

In [10] was shown that due to in general a fundamental set (FS) does not satisfy the
restricted conditions imposed by Proposition 1 and its Corollary, in [10] it is proposed
the following procedure to transform a general FS into an auxiliary FS’ satisfying the
desired conditions:

TRAINING PHASE:

Step 1. Transform the FS into an auxiliary fundamental set (FS’) satisfying Theorem 1:
1) Make D a vector.cont ,
2) Make 1111 ,, yxyx .
3) For the remaining couples do {

For 2 to p {

D1xx ; xxx̂ ; D1yy ; yŷ }

Step 2. Build matrix M in terms of set FS’: Apply to FS’ steps 1 and 2 of the training
procedure described at the beginning of this section.

RECALLING PHASE:

We have also two cases, i.e.:

Case 1: Recalling of a fundamental pattern of FS:

1) Transform tox x by applying the following transformation:

x̂xx .

2) Apply equations (4) and (5) to each x of FS’ to recall y .

3) Recall each by applying the following inverse transformation: y y .

Case 2: Recalling of a pattern y from an altered version of its key: x~ :

144 H. Sossa, R. Barrón, B. Torres

1) Transform x~ to x by applying the following transformation:

x̂xx ~ .

2) Apply equations (6) and (7) to x to get y , and

3) Anti-transform y as yy ˆy to get .y

In general, the noise added to a pattern does not satisfy the conditions imposed by
Proposition 2. The following result (in the transformed domain) state the conditions
under which MEDMEMs present perfect recall under general mixed noise [11]:

Proposition 3 [11]. Let p,,2,1|,yx , nRx , a

fundamental set

mRy
Dx 1 x yy 1, ,D p,,2,1 ,

, . Without lost of generality suppose that is TddD ,, Constd p odd.

Thus the associative memory
TxyM

1
 has perfect recall in the presence of

noise if less than 2/1n of the elements of any of the input patterns are
distorted by mixed noise.

4 The Proposal

The proposal to solve the problem described in section 1 is composed of two phases:
Construction of the banks of memories and restoration of the word. The steps of each
of these two phases are next explained. Also, in which follows, letters of words are
represented in decimal ASCII code before further processing. This way letter “A” is
represented thus as 65 in decimal ASCII code, letter “B” as 66, and so on.

4.1 Phase 1: Construction of the bank of memories

This phase has two steps as follows. Given a set of wS p different words with

different cardinality piwC i ,,2,1, :

Step 1: Group words according to their cardinality.
Step 2: For lowest cardinality to biggest cardinality C :lowestC biggest

1. Codify each word as explained.
2. Due to each FS does not satisfy conditions stated by Theorem 1 and

Corollary 1, transform corresponding FS to auxiliary fundamental set
FS’.

3. Built corresponding memory M.

4.3 Phase 2: Word restoration

This phase follows four steps. Given a scrambled word:

Associative Processing Applied to Word Reconstruction in the Presence... 145

Step 1: Codify word in decimal ASCII code as explained.
Step 2: Transform codified version as explained in step 1 of case 2 of recalling

phase (Section 3.3).
Step 3: Apply equations (6) and (7) to transformed version.
Step 4: Anti-transform recalled pattern to get desired pattern (step 3 of case 2 of

recalling phase (Section 3.3)).

5 Numerical Example

To better understand the functioning of the proposal, let us suppose that we are given
the following two sets of Spanish words grouped by cardinality 4 and 5 as follows:

{Gato, Sebo, Trío} and {Félix, Lanar, Opino}.

Represented in decimal ASCII code, these two sets are as follows:

{(71,97,116,111),(83,101,98,111),(84,114,161,111)}
and

{(70,130,108,105,120),(76,97,110,97,114),(79,112,105,110,111)}.

Phase 1: Memory construction:

Step 1: Transformation of FS to auxiliary FS: Suppose that 10d :

First FS. Words Gato, Sebo and Trío Second FS. Words: Félix, Lanar and Opino
Transformed vector Difference Transformed vector Difference

(71,97,116,111) (0,0,0,0) (70,130,108,105,120) (0,0,0,0,0)
(81,107,126,121) (-2,6,28,10) (80,140,118,115,130) (4,43,8,18,16)
(91,117,136,131) (-7,3,-25,20) (90,150,128,125,140) (11,38,23,15,29)

Step 2: Construction of memories:

According to the material exposed in Section 3.1 we have to memories, one for words
of cardinality 3 and one for words of cardinality 4:

051440
501945

1419026
4045260

1M and M .

015121050
15032535
12302238

102522060
503538600

2

Phase 2: Word restoration:

Example 1: Given altered version Lanra, reconstruct corresponding word (Lanar):

Solution:

146 H. Sossa, R. Barrón, B. Torres

Step 1: Codification of word: Decimal ASCII code for scrambled version Lanra is:
(76,97,110,114,97).

Step 2: Transformation of word: By adding difference vector (4,43,8,18,16) to altered
version we get transformed vector (step 1 of case 2: Recalling of a pattern from an
altered version of its key):

(76,97,110,114,97) + (4,43,8,18,16) = (80,140,118,132,116)

Step 3: Application of corresponding memory transformed version: In this case we
apply matrix and equations (6) and (7) to transformed version. We get:2M

(80,140,118,115,130)

Step 4: Anti-transformation of recalled pattern to get desired pattern. As explained in
section 4.3 this is done by subtracting from recalled pattern corresponding difference vector. In
this case vector (4,43,8,18,16). We get:

(80,140,118,115,130) - (4,43,8,18,16) = (80,140,118,97,114),

which corresponds as you can appreciate to word: Lanar.

6 Experimental Results

In this section we show how the proposal described in section 4 can be used to recover
a given word from a scrambled version of its letters. For this the set Spanish words
shown in Table 1 is used:

Number of letters per word and words used in the experiments
5 7 9

ABRIR DECIMAL CASADEROS
FÉLIX FLUVIAL COLIBRÍES
IBIZA FORMADO INCOMODEN

LANAR IDIOTEZ POPULARES
OPINO LINCHAR VIOLENCIA
PANAL OSTENDE -
RUEDA SEMANAL -
RUGBY - -
TRINA - -

Table 1. List of words used in the experiments.

6.1 Memory construction

Each word is first codified in decimal ASCII as specified. Each set of codified words,
beginning by words cardinality 5 and ending with words of cardinality 9, is then
transformed to its corresponding auxiliary fundamental set. First codified word of each

Associative Processing Applied to Word Reconstruction in the Presence... 147

set is used to build corresponding associative memory. At the end of the process we
end with six matrices: M , and . Matrix codifies the information of
words with 5 letters. Matrix codifies the information of words with 7 letters, while
matrix codifies the information of words with nine letters.

1 2M
2M

3M 1M

3M

6.2 Recalling of each fundamental set

Each word of each set was transformed and presented to its corresponding memory. Of
course, due to Theorem 1 and its Corollary all words were perfectly recalled.

6.3 Recalling of a word from a distorted version of it (first experiment)

In this experiment less than 50% of the letters of each word of Table 1 were
exchanged. In the case of words of five letters two letters were chosen, in the case of
words of seven letters three letters were chosen, and in the case of the words of nine
letters four letters were exchanged. One scrambled version of each word was
generated. Each scrambled version was processed as described and the results were
summarized in Table 2. As can be seen from this table, in all cases the desired word
was correctly recalled. This of course is an expected result due to the noise added to the
patterns satisfies the conditions for recalling specified by Proposition 3.

6.4 Recalling of a word from a distorted version of it (second experiment)

In this experiment more than 50% of the letters of each word of Table 1 were
exchanged. In the case of words of four letters two letters were chosen, in the case of
words of seven letters six letters were chosen, and in the case of the words of eight
letters four letters were exchanged. One scrambled version of each word was
generated. Each scrambled version was processed as described and the results were
summarized in Table 3. As can be seen from this table, in some cases the desired word
was not correctly recalled, in other cases it was. One can ask why of this fact. In the
one hand it was simply because the percentage of 50% given by Proposition 3 was
surpassed. In the other hand we have to remember that if the noise added to a pattern is
median zero, it does not matter how the pattern is altered it should be correctly
recalled. This is exactly what is happening in this case. Let us take for example altered
version FDOAMOR (decimal ASCII code: 70 68 79 65 77 79 82) of word FORMADO. You
can easily verify that the noise added to word DECIMAL (decimal ASCII code: 70 79 82 77 65
68 79) is:

70 68 79 65 77 79 82
70 79 82 77 65 68 79
0 -11 -3 -12 12 11 3

By arranging the component of last row and by taking the median we have that the
median of the noise added to word in ASCII code equals median (-12,-11,-
3,0,3,11,12)=0. Thus despite more than 50% of the components of the word are
modified correct recalled is obtained. In the remaining cases the word was not correctly
recalled because more than 50% of its components were altered and because the noise

148 H. Sossa, R. Barrón, B. Torres

added to the word has no median equal to 0. From this we can conclude that
Proposition 2 is a stronger than Proposition 3.

Word Generated word Recalled word Word Generated word Recalled word
ABRIR AIRBR ABRIR DECIMAL DECLMAI DECIMAL
FELIX XELIF FELIX FLUVIAL ALUVIFL FLUVIAL
IBIZA IAIZB IBIZA FORMADO FOOMADR FORMADO

LANAR LANRA LANAR IDIOTEZ ZDIOTEI IDIOTEZ
OPINO OIPNO OPINO LINCHAR LIACHNR LINCHAR
PANAL PALAN PANAL OSTENDE ESTONDE OSTENDE
RUEDA RAEDU RUEDA SEMANAL SAMANEL SEMANAL
RUGBY RUGYB RUGBY - - -
TRINA RTINA TRINA - - -

 (a) (b)
Word Generated word Recalled word

CASADEROS CESADAROS CASADEROS
COLIBRÍES COLIBIRES COLIBRÍES

INCOMODEN INCOMODEN INCOMODEN
POPULARES PUPOLARES POPULARES
VIOLENCIA VIOCENLIA VIOLENCIA

(c)
Table 2. Recalling results. (a) Words of five letters. (b) For words of 7 letters. (c) For
words of 9 letters. In all cases the desired word was correctly recalled.

Word Generated word Recalled word Word Generated word Recalled word
ABRIR ARIRB ABRIR DECIMAL LACEDMI ABAFJAI
FELIX FXLEI FELIX FLUVIAL UILLVAF CIRSFAI
IBIZA IZAIB IBIZA FORMADO FDOAMOR FORMADO

LANAR LNARA LANAR IDIOTEZ TEIIZDO IDIOTEZ
OPINO ONOPI OPINO LINCHAR NCLRHIA LINCHAR
PANAL PLANA PANAL OSTENDE DTNSOEE PTUFOEF
RUEDA REAUD RUEDA SEMANAL MSEALNA QCKALAJ
RUGBY RYBUG RUGBY - - -
TRINA TANIR TRINA - - -

 (a) (b)
Word Generated word Recalled word

CASADEROS SACORADSE CASADEROS
COLIBRÍES RIESBCLIO COLIBRÍES

INCOMODEN MEDONCNOI JODPNPEFO
POPULARES LAROPUSEP POPULARES
VIOLENCIA VAICNELOI VIOLENCIA

(c)
Table 3. Recalling results. (a) Words of five letters. (b) For words of 7 letters. (c) For
words of 9 letters.

 It is worth to mention than during recall if the value of a recalled letter goes under
the value 65 (‘A’) or above the value 90 (‘Z’), this value is to 65 and 90. This way in a
recalled word we avoid having symbols different from letters.

Associative Processing Applied to Word Reconstruction in the Presence... 149

7 Conclusions and Present Research

In this brief note we have shown how an associative memory can be used to find
(recover) a desired word given a scrambled version of it. The scrambled version is first
taken to a transformed domain were it can be operated by the corresponding memory.
This operation automatically reorders the letters of the scrambled word.
 In the general case we do not know from which word a distorted version was
obtained. We are actually working through an efficient method that allows to recognize
a given from a distorted version of it without having to compare it with all possible
words. We are also looking for more real situations were the proposal could find
applicability.

Acknowledgements. This work was economically supported by CGPI-IPN under
grants 20050156 and CONACYT by means of grant 46805. H. Sossa specially thanks
COTEPABE-IPN, CONACYT (Dirección de Asuntos Internacionales) and DAAD
(Deutscher Akademischer Austauschdienst) for the economical support granted during
research stay at Friedrich-Schiller University, Jena, Germany.

References

1. K. Steinbuch (1961). die Lernmatrix, Kyberneitk C-1,1,26-45.
2. J. Anderson (1972). A simple neural network generating an interactive memory,

Mathematical Biosciences C-14, 197-220.
3. T. Kohonen (1972). Correlation matrix memories, IEEE Transactions Computers C-21, 4,

444-445.
4. J. Hopfield (1982). Neural Network and Physicals systems with emergent collective

computational abilities. Proceedings of the National Academy of Sciences, C-79, 2554-
2558.

5. G. X. Ritter qt al. (1998). Morphological associative memories, IEEE Transactions on
Neural Networks, C-9,281-293.

6. G. X. Ritter et al. (1999). Morphological bi-directional associative memories, Neural
Networks, 12:851-867.

7. H. Sossa et al. (2005). Associative gray-level pattern processing using binary
decomposition and a-b memories. To appear in Neural Processing Letters.

8. C. Yáñez (2002). Associative Memories based on Order Relations and Binary Operators
(In Spanish), PhD Thesis, Center for Computing Research-IPN.

9. H. Sossa, R. Barrón and R. A. Vázquez (2004). New Associative Memories to Recall
Real-Valued Patterns. LNCS 3287. Springer Verlag. Pp. 195-202.

10. H. Sossa and R. Barrón (2004). Transforming Fundamental Set of Patterns to a Canonical
Form to Improve Pattern Recall. LNAI 3315. Springer Verlag. Pp. 687-696.

11. H. Sossa and R. Barrón (2005). Median Associatives Memories: New Results.
Submmited to CIARP 2005.

150 H. Sossa, R. Barrón, B. Torres

Machine Learning
and Neural Networks

Hybrid strategies and meta-learning: an inquiry

into the epistemology of artificial learning

Ciro Castiello and Anna Maria Fanelli

Dipartimento di Informatica, Università degli Studi di Bari,
Via E. Orabona, 4 - 70126 Bari ITALY
{castiello, fanelli}@di.uniba.it

Abstract. The problem of developing artificial learning systems cannot
be confined in the realm of computer science and researchers in this field
are called to face an ambitious question reverberating on several disci-
plines. A deeper investigation in this sense reveals an intriguing paral-
lelism between conceptual theories of knowledge and mathematical mod-
els of intellect. Hybridisation strategies and meta-learning approaches are
discussed in conformity with the indications of a comprehensive episte-
mological inquiry into artificial intelligence.

1 Introduction

The progress attained in artificial learning in the last few decades gave rise to the
rapid proliferation of several applications, some of them exhibiting commercial
software facets. Also, the oncoming development of new branches of research
and the continuous broadening of application environments favoured the ma-
chine learning appealing to a new generation of young scientists and specialists.
However, if we refer to the very ultimate goal of the research in artificial intel-
ligence (AI), addressing the thorough emulation of human capabilities, a still
long route remains to be covered. In this direction, it makes sense, at least in an
academic perspective, to investigate theoretical models of intellect, in order to
deepen our understanding of human and artificial cognitive mechanisms.

This work takes part in the epistemological debate around the validity of arti-
ficial learning methods, not only in terms of contingent performance results, but
also considering the theoretical assessment of their inherent foundation. Moving
from the classical debates about the human intellect, we propose a critical inquiry
to highlight the strict connection existing between philosophical constructions
and scientific approaches to artificial learning. Putting emphasis on the twofold
character of human thought, combining apriority and adaptivity, we analyse the
typical conceptual schemes which formalise the common reasoning mechanisms.
It should not come as a surprise the resort to the speculative investigations for
tackling questions pertaining to the computer science sphere of activity. Actu-
ally, it has been observed that the scientific progress would grow faster if the
close relationship between mathematical and philosophical concepts is properly
understood and esteemed [1]. Bearing in mind this guideline, we draw up a sur-
vey of the various concepts of human intellect, steering our research in the realm

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 153-162

of artificial learning. The resulting epistemological analysis is helpful to show
connections among the ideas developed by thinkers and scientists far separated
in time and space. Particularly, the problem of learning is tackled in the article,
by establishing an extensive definition of learning by induction which is involved
with the Hume’s predicament concerning the plausibility of generalisations [2].
In the context of AI system development, we underline how the mechanism of hy-
bridisation could produce a synthesis among adaptivity and apriority (similarly
to what happened in particular moments of the philosophical debate). More-
over, to escape the riddle of induction, we propose a peculiar epistemological
approach, claiming the possibility for inductive processes to justify themselves.
In this way, we address the field of meta-learning as a promising research di-
rection to vitalize the studies in artificial intelligence. By the end of the paper,
we shall be able to briefly illustrate also a particular meta-learning framework
developed according to the indications provided by the epistemological inquiry.

2 The quest for a theory of knowledge

Since from the ancient times, philosophers tried to find a rationale behind the
processes of knowledge acquisition and the mechanisms of learning. A first rele-
vant construction of a theory of knowledge could be traced back to Plato. The
Greek philosopher emphasised the inadequacy of human senses, stating that the
ability to think is founded on a priori concepts embedded into the human mind,
namely the Ideas [3]. These abstract concepts are endowed with complete worthi-
ness and possess true and eternal existence. This is the reason why the Platonic
philosophical establishment is also referred to as realism, indicating the reality
of a priori Ideas, opposed to the unreality of experience. Engaging in controversy
with the Platonic realism, a different conceptual perspective called nominalism,
related to the Cynic school of philosophy, stated the impossibility of grasping the
universal concepts without the recourse to sensible experience. In this way, the
Ideas lose any existential connotation and are regarded only as labels indicating
ensembles of objects.

The realism and the nominalism have represented the keystones of the philo-
sophical debates in the subsequent centuries. On the one hand, Platonic realism
advocates committing to apriorism for grounding a theory of knowledge, that
should always start from a base of eternal immutable universal concepts. On the
other hand, nominalism considers the sensible experience as the only source of
knowledge, thus resorting to adaptivity for adequately tackling the natural plu-
rality. Plato’s principle of apriority provide for an answer about the possibility
of knowledge, but it does not suffice to approach another fundamental question
concerning intellect: how is learning possible? This kind of inadequacy was quite
soon identified as a “leak” into the Platonic construction: Aristotle recognised
that Plato’s formulation cannot generate any form of learning, since Ideas are
detached from the world where the universal concepts become incarnate. To
solve this problem, the Aristotelian theory is based on the assumption that the
communication of Ideas with the physical world is resolved in the meeting be-

Castiello C., Fanelli A.154

tween form and matter [4]. The Aristotelian forms are characterised by an a
priori universal reality and represent the formative principle in human learning.
However, forms possess also a dynamic nature, being able to originate all the
extraordinary variety of the physical world, during their encounter with matter.
Aristotle’s construction can be seen as the first attempt to approach the debate
about the theory of knowledge by combining apriority with adaptivity of mind.

Actually, the divergences between Aristotle and Plato were minimised by
the thinkers of the years to come and the lack of clarity in Aristotelian theory
contributed to the mediaeval controversy involving the sustainers of nominalism
and realism. The theory of knowledge evolved through a debate strongly biased
by the role played by theological thinking. The famous “Occam’s razor”, deny-
ing any resort to universal a-priori concepts to attain knowledge of the world,
founded the problem of knowledge on direct experience and encouraged the sci-
entific research and the development of the coming philosophy of empiricism.

The epistemological problem assumes the connotation of the “specific prob-
lem” of the modern philosophy: rationalism and empiricism can be seen as means
to grasp the reality outside the mind. These means share the awareness of mental
representations and external reality, but differ in their approaches. Rationalism
answers the question of knowledge by highlighting the misleading nature of sen-
sitivity and by proposing a metaphysical construction to bridge the gap between
mental representations and external reality. Empiricism underlines the reveal-
ing character of sensitivity, trying to learn external reality by questioning our
senses (denying any apriority for our mental representations). Again, the oppo-
sition between intellectual apriorism and natural adaptivity stands out, with a
reprise of the dualism of realism and nominalism. As concerning the problem of
learning, the empirical perspective is based on inductive approaches affirming
the foundation of the knowledge of the world on simple sensible data. Partic-
ularly, Hume stressed the empirical tendencies by examining possibilities and
limitations of human cognitive experience. In [2], the Scottish thinker faced the
causality problem and, in his argumentations, the idea of a necessary connection
cause-effect is ruled out both in aprioristic sense and in relation to any source
of experience. In this way, the causality principle is spoiled of necessity, loosing
epistemological justification: only habit is responsible of human generalisations.
This consideration is pregnant of significance in our inquiry, since it asserts that
induction is not a valid form of reasoning and, consequently, a criticism is raised
with regard to the scientific method that aims at generalisation.

Similarly to Aristotle, Kant tried to solve the problem of knowledge com-
posing the breach between rationalism and empiricism. In [5] it is shown how,
although knowledge cannot transcend experience, nevertheless it is partly char-
acterised by an a priori component that is not inductively inferable from expe-
rience. The novel epistemological argumentation asserts that science is based on
synthetic judgements a priori that, even if can be evoked by experience, should
be founded on a very solid base that induction could never offer to a general
law. Again, the keystone of a unifying theory consists in its effort of combining
apriority with adaptivity of mind. In the following, we start an analysis of formal

Hybrid Strategies and Meta-Learning: an Inquiry into the Epistemology... 155

Fig. 1. The working mechanism of a rule-based artificial intelligent system.

modelling of intellect to underline the connection existing among mathematical
concepts and philosophical positions.

3 Mathematical concepts of intellect

When dealing with logical reasoning, a concept can be thought as a rule by
which an instance domain is partitioned into a subset of instances satisfying the
rule, and another subset whose instances do not satisfy the rule. The process
that allows to advance from general concepts to particular rules is referred to as
deduction. If we intend to design an AI system working on the basis of deductive
reasoning, then we should pay attention in providing it with a priori knowledge,
namely a database of general concepts and rules, useful for tackling world prob-
lems. Deductive approach can be easily brought back to the Platonic realism: the
role of a priori principles is emphasised in the knowledge construction process
and experience of sensible world is just an afterthought.

When the reasoning process allows us to advance from particular observa-
tions to general concepts, then the logical inference performed is referred to as
induction. An AI system, designed to reason in terms of inductive inferences,
needs no a priori content: its action will be driven by the observation of real
objects and the consequent generalisation processes. Induction could be related
to the nominalistic approach: the role of universal principles is underestimated
and general concepts become names, assigned to classes of similar objects.

The deductive inference is characterised by an additive, demonstrative, non-
ampliative nature, which is able to preserve truthfulness. On the other hand,
inductive learning preserves falsity and does not preserve truthfulness, thus show-
ing a non-additive, non-demonstrative nature. Moreover, induction helps to go
beyond deductive attainments, since inductive conclusions entail more informa-
tion contents than those embedded into the premise concepts.

An analysis of mathematical models of intellect can be focused in the field
of artificial intelligence, in particular reviewing rule-based models and connec-
tionist systems. Assuming that a priori knowledge has to be embedded into a

Castiello C., Fanelli A.156

Fig. 2. The structure of an ANN composed by two unit layers, plus an input layer.

machine, an AI system can be endowed with a base of logical rules, similar to the
high-level cognitive concepts utilised by a human in conscious decision-making
processes. The mathematical formalisation of this concept of intellect makes use
of name variables, rather then numbers, and logical inferences represent the basis
of reasoning and knowledge acquisition. This direction in the theory of intellect
has been usually referred to as rule-based AI or, with a misnomer, symbolic AI [6,
7]. The basic working plan of a rule-based system follows the reasoning process
of a human expert to solve a real-world problem. All the possible situations in a
particular environment are codified in a number of rules of the typical form: “IF
antecedent THEN consequent”. The necessary relationship between antecedent

and consequent formalises in a logical form the knowledge of the expert (as
sketched in figure 1(a)). When the system has to face a particular problem, the
real occurrence is translated into a logical form, consistent with the knowledge
base, and a concatenation of inferences produces the final solution, as depicted
in figure 1(b). The question about the possibility of learning is re-proposed in
rule-based AI, since the deductive inferences operated by logical systems do
not prove to build up a model of intellect with actual knowledge enlargement
capabilities. Moreover, combinatorial complexity undermines the foundation of
rule-based AI. Actually, systems of logical rules are doomed to perform well in
limited domains, since the amount of concepts to be formalised is not prohibitive.

Artificial neural networks (ANN) are computational models that, loosely mo-
tivated by biological systems, exhibit some of the properties of the brain [8, 9].
They are composed by a number of simple processors (neurons) working in par-
allel, without any centralised control. The neurons are arranged into a particular
structure (usually organised in layers), where a system of weighted connections
guarantees the information flow through the network (see figure 2). Neural net-
works are commonly regarded as learning machines that work solely on the basis
of empirical data. The only means for acquiring knowledge about the world in a
connectionist system come from observational instances and there are no a priori
designed conceptual patterns that could lead the learning process. The lack of
any kind of conceptual cognition and the resort to data for developing knowl-
edge let us review the connectionist approach as an empirical attitude in the
context of the theory of intellect. Neural networks have shown their effectiveness

Hybrid Strategies and Meta-Learning: an Inquiry into the Epistemology... 157

in a number of applications, however they exhibited also a variety of problems
that in many cases limit their profitable employment. In particular, the most
relevant difficulties are related to the lack of transparency of neural networks
(that represents also an obstacle for the a priori knowledge exploitation), and
the number of training samples required for learning (that could be prohibitive
when dealing with large, complex real-world problems).

4 Complexity, hybrid strategies and fuzzy logic

The conducted analysis would suggest that every attempt to develop a com-
prehensive mathematical model of human intellect could be frustrated by a
combinatorial complexity explosion. In fact, methods based on adaptivity are
subjected to combinatorial explosion of the training process. On the other hand,
approaches related to apriority have to face combinatorial explosion of the knowl-
edge base complexity. A lesson can be derived from those remarks: the matter
of combining adaptivity and apriority assumes paramount relevance in artificial
intelligence, similarly to what happens in the debates for understanding human
intelligence. As already pointed out, Aristotle perceived that the lack of adap-
tivity would have doomed the Platonic theory of ideas to cut off every kind
of learning capacity. Correspondingly, the Kantian construction of a theory of
knowledge, based on synthetic judgements a priori, implicitly expressed the urge
for a combination of the aprioristic contents of intellect with its adapting ca-
pabilities. Also in recent lines of inquiry, related to the field of philosophy of
science, the mechanism of hybridisation has been appraised as a more correct
attitude for developing consistent research in the AI field [10]. Hybridisation, in
fact, appears to be a much more effective practice to produce successful mod-
els, in place of the abused appeal to “paradigms” (that disorderly evolve in a
quite exaggerated number in AI contexts, with respect to what happens in more
consolidated sciences, such as physics).

Nevertheless, the problem of complexity is deeply rooted in some kind of
contradictions that can be highlighted once again by referring to the conceptual
discussions of the past. Aristotelian logic hardly conciliates with the theory of
forms: while the first describes laws governing definitive and eternal truths, the
latter emphasises the dynamic and adaptive role of forms in a mutable world. In
modern times, Kant operated a “Copernican revolution” to explain the modali-
ties of the knowledge construction process. The novel epistemological assessment,
while stating that it is impossible to know the thing-in-itself of the world real-
ity, transfers the focus on the cognitive subject and her own peculiar ability of
perceiving phenomena. This way of understanding reality could be hardly rep-
resented by the logical mechanisms, which seek for the absolute essence of the
thing-in-itself. When the mature logical tradition of the early 1900s resolved
to eliminate any uncertainty and subjectivity from the knowledge construction
process, a definitive impediment disturbed the mathematical dream. Gödel the-
orems of incompleteness established that the price for the exactness is paid in
terms of completeness. A different direction to resolve the Aristotelian contra-

Castiello C., Fanelli A.158

diction, opposing rigid logical schemes to the plasticity of human thought, was
undertaken by accepting uncertainty in reasoning process. Fuzzy logic invali-
dates the cornerstones of formal logic (namely, the law of excluded third and the
principle of contradiction) and brings forward a form of approximate reasoning
that, while renouncing exactness, fits better the vagueness of real world situa-
tions. Into the inherent nature of fuzzy logic, admitting a subjective capability
of expressing different degrees of truth, it is possible to trace the echoes of the
modern philosophical attitude toward the theory of knowledge, as expressed by
Schopenhauer’s words. “The world is my representation” [11] could be intended
as the ante litteram statement of the novel conception of knowledge embedded
in the fuzzy way of reasoning.

5 Learning through induction

As we have already pointed out, the problem of establishing a proper definition
of learning has troubled thinkers and scientists for many times. We assume that
learning occurs by increasing the amount of available knowledge, namely by
enlarging the base of knowledge determined by a “deductive closure”. In order
to derive some new pieces of information, the “inductive leap” appears to be a
necessary mechanism, therefore we concentrate on induction to properly discuss
an epistemological assessment of learning practices.

It is straightforward to relate this kind of definition of learning, connected
with induction, with the conceptual disputes dating back to Hume’s argumenta-
tions about the generalisation plausibility. It should be noted that the intriguing
unsafety of induction does not regard only the guarantee of generating correct
conclusions: it is also doubtful whether the basic inductive mechanisms possess
credibility, in any meaningful sense. The crux of the matter in Hume’s argu-
mentation relies in the inability to define a rationale behind inductive activities,
since no finite number of observations could be enough reason to suppose any-
thing general. This consideration ultimately prevents the support of any degree
of confidence in any prediction. Following this line, only habit (namely, repeated
observation of regularities) is responsible for the generalisation practice [2].

The problem of induction represents the starting point also for modern nat-
uralism, suggesting a new attitude to tackle generalisation [12]. Moving from
the observation of the defeat of traditional epistemology, that was not able to
escape the stalemate of the Hume’s predicament, the new claim of naturalism
consists in reducing the human knowledge to a natural phenomenon, falling un-
der the activity sphere of science. In this way, epistemological problems become
scientific concerns, thus reducing the role of the theory of knowledge: an implicit
reshaping of epistemology is applied, admitting the out-of-reach character of tra-
ditional investigations. Following the naturalistic view, inductive processes are
endowed with the faculty of justifying themselves, and epistemological concerns
address a higher conceptual level where basic learning practice leaves room for
meta-learning investigations. In other words, the attention is shifted from mere
justification of induction toward the problem of performing a suitable selection

Hybrid Strategies and Meta-Learning: an Inquiry into the Epistemology... 159

among inductive hypotheses. Of course, these aspects are intrinsically connected
and their examinations cannot be conducted in a separate fashion. Nevertheless,
it seems that an interesting approach could be grounded on a modified basic
perspective. Instead of reviewing our mind activity as a process triggered off
only by the experience of particular regularities in the world, we could think of
our inductive mechanisms as a perpetual motion of the mind, which naturally
generalises from observations along different lines, and progressively becomes
skilled in tracing the correct directions.

In practice, artificial learning, recognised as the empirical science of inductive
methods, provides a laboratory to develop and evaluate generalisation strategies.
If inductive practices scatter in several directions, then producing successful gen-
eralisations is just a matter of defining the proper bias which helps to find the
way in each circumstance. Meta-learning should be able to provide the neces-
sary knowledge of the world and guidance for determining the proper direction in
generalisation processes. The meta-learning activity should rely on the assump-
tion that previously successful strategies of induction are supposed to generate
hypotheses which can be generally considered better supported. In other words,
predictive success provides one of the most powerful basis to assess inductive
conclusions. Following this approach, where inductive practices are evaluated
by resorting to induction, meta-learning strategies should be employed in the
field of artificial learning, supported by the current directions of epistemological
investigations. In the following we are going to take a closer look at the computa-
tional methods of artificial learning, briefly reviewing the limitations of common
base-learning strategies and the potentialities of meta-learning approaches.

5.1 Computational methods and induction: being Mindful when

learning

The applied research in the field of artificial intelligent systems often deals with
empirical evaluations of machine learning algorithms to illustrate the selective
superiority of a particular model. This kind of approach, with multiple mod-
els evaluated on multiple datasets, is characterised by a “case study” formula-
tion that has been recognised and criticised in literature [13, 14]. The selective
superiority demonstrated by a learner in a case study application reflects the
inherent nature of the so-called base-learning strategies, where data-based mod-
els exhibit generalisation capabilities when tackling a particular task. Precisely,
base-learning approaches are characterised by the employment of a fixed bias,
that is the ensemble of all the assumptions, restrictions and preferences presid-
ing over the learner behaviour. This means a restricted domain of expertise for
each learning model, and a reduction in its overall scope of application. The
limitations of base-learning strategies can be theoretically established: the no
free lunch theorems express the fundamental performance equality of any cho-
sen couple of learners (when averaged on every task), and deny the superiority
of specific learning models outside the case study dimension [15].

Obviously, if we want to perform pragmatic investigations of particular do-
mains, base-learning approaches represent a quite satisfactory way of proceeding

Castiello C., Fanelli A.160

Fig. 3. The design of the Mindful system; the kernel of the system is represented by
a neuro-fuzzy learning scheme.

to obtain adequate results. On the other hand, whenever we are interested in fol-
lowing a line of research with a broader scope, involving more general theoretical
issues and some kind of cross-domain applications, the resort to somewhat dif-
ferent methodologies is advisable. By focusing the attention on the role of bias,
we characterise the meta-learning approach as a dynamical search of a proper
bias, that should be able to adapt the learner behaviour to the particular task
at hand. The research field of meta-learning represents a novel approach aiming
at designing artificial learners with enhanced capabilities, possibly capable of
profiting from accumulated past experience [16, 17]. In this way, the formula-
tion of the model evaluation could overcome the case study dimension and the
limitations of the base-learning strategies.

The conducted epistemological inquiry, in the way it has been described
in this paper, ultimately directed our investigation to design a particular meta-
learning framework, namely the Mindful (Meta-INDuctive neuro-FUzzy Learn-
ing) system, which we are going to synthetically describe. (Obviously, the com-
prehensive presentation of the Mindful system, together with the discussion of
its realisation and evaluation do not concern the scope of this article, see [18] for
further details.) To compose the schism between aprioristic knowledge represen-
tations and adaptive fitting to data observations, our meta-learning methodology
is centred on the integration of apriority and adaptivity, conjugating the expres-
siveness of a rule base with the effectiveness of a neural model. Moreover, this
kind of hybridisation takes into account the problem of complexity, and aims
at combining the neural network learning capabilities with the representational
power of fuzzy logic. In this way, the learning framework is based on the em-
ployment of a neuro-fuzzy integration which provides the additional benefit of
arranging the available knowledge in a comprehensible and manageable fashion.
Actually, the neuro-fuzzy scheme had to be adapted to fulfil the meta-learning re-
quirements. The important point here consists in consenting inductive practices
to evaluate past experiences of induction and to project successful generalisations
beyond the analysed situations. For this purpose, the Mindful system has been

Hybrid Strategies and Meta-Learning: an Inquiry into the Epistemology... 161

organised in order to employ the same neuro-fuzzy learning scheme both as base-
and meta-learner (figure 3 depicts the general scheme of the system). In prac-
tice, base-level tasks are tackled following a consolidated approach which exploits
neural learning for deriving from data a base of interpretable knowledge, useful
for solving each specific problem at hand. At the same time, a meta-learning
activity is brought forward, where the same knowledge-based methodology is
adopted. In this case, a set of meta-features (describing the properties of tasks)
is correlated with the bias configurations adopted during the base-level activity
(different learning parameter settings are acknowledged as distinct biases of the
system). In this way, the meta-learner provides an explicit meta-knowledge, in
terms of fuzzy rules, representing a significant form of high-level information to
direct the learning process of the base-learner in novel circumstances.

Mindful does not pretend to furnish a definitive solution to the meta-
learning questions, neither to stand as an arrival point for our investigation.
Nevertheless, it is an attempt toward a systematic study of meta-learning, where
hybridisation issues and epistemological grounds are particularly emphasised.

References

1. Perlovsky, L. I.: Neural Networks and Intellect Using Model-Based Concepts, Oxford
Univ. Press (2001)

2. Hume, D.: A treatise on human nature (1740)
3. Plato: Parmenides (IV BC)
4. Aristotle: Metaphysics (IV BC)
5. Kant, I.: Critique of pure reason (1781)
6. Minsky, M. L.: Semantic Information Processing, MIT Press (1968)
7. Newell, A., Simon, H. A.: Human Problem Solving, Prentice-Hall (1972)
8. Bishop, C. M.: Neural Networks for Pattern Recognition, Oxford Univ. Press (1995)
9. Haykin, S.: Neural Networks - A Comprehensive Foundation, Prentice Hall (1999)
10. Cordeschi, R.: Filosofia dell’intelligenza artificiale. In Floridi, L. (editor) Linee di

ricerca, SWIF, 525–551 (www.swif.it/biblioteca/lr) (2004)
11. Schopenhauer, A.: The world as will and as representation (1818)
12. Quine, W. V. O.: Epistemology naturalised. In Ontological relativity and other

essays (1969)
13. Aha, D. W.: Generalizing from case studies: a case study. In Proc. 9th Int. Conf.

on Machine Learning (1992)
14. Brodley, C.: Addressing the selective superiority problem: automatic algo-

rithm/model class selection. In Proc. 10th Int. Conf. on Machine Learning (1993)
15. Wolpert, D. H., Macready, W. G.: No free lunch theorems for optimization. IEEE

Transactions on Evolutionary Computation 1(1) (1997) 67–82
16. Thrun, S., Pratt, L., (eds.): Learning to Learn. Kluwer Academic Publisher (1998)
17. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artificial

Intelligence Review 18 (2002) 77–95
18. Castiello, C.: Meta-Learning: a Concern for Epistemology and Computational In-

telligence. PhD Thesis. University of Bari - Italy (2004)

Castiello C., Fanelli A.162

Comparison of Neuro-Fuzzy Systems with a
Defuzzification-Based Algorithm for Learning Fuzzy Rules

Jean J. Saade and Adel Fakih

P

Abstra
used to
approac
learning
Mendel
The co
parame
are use
and a d
advanta

1 Introdu
Due to the im
human knowl
deal of atten
learning appr
Takagi-Sugen

This study ad
conventional
methods is g
properties. B
defuzzificatio
picture and c
this algorithm
of setting th
interpretabilit

2 TSK Fu
In a TSK fuzz
of linguistic
with inputs,p
follows:

 IF:Rr

© A. Gelbukh,
Advances in A
Research on C
 ECE Department, FEA, American University of Beirut,
.O.Box: 11-0236, Riad El Solh 1107 2020, Beirut, Lebanon

E-mail: jsaade@aub.edu.lb
ct. This study deals in its first stage with some neuro-fuzzy algorithms
 learn fuzzy inference systems. Two categories of neuro-fuzzy learning
hes are described and compared. The first contains the conventional
 approaches, which were developed by Ichihashi, Nomura, Wang and
. The second consists of another method developed by Shi and Mizumoto.
mparison is based on practical properties related to structure and

ters learning. Then, the drawn conclusions and the mentioned properties
d to provide a comparison between the considered neuro-fuzzy methods
eveloped defuzzification-based learning algorithm for fuzzy systems. The
ges of this algorithm over the neuro-fuzzy ones are clearly emphasized.

ction
portance of fuzzy inference systems in the linguistic representation of
edge and expertise, the design of these systems has been given a great
tion in the literature. Design methods using data-driven neuro-fuzzy
oaches, where a neural network learning procedure is used to identify
o-Kang (TSK) fuzzy model parameters, have been devised [1-7].

dresses first two categories of neuro-fuzzy learning approaches: The
ones and another new approach [1-6]. An overview of these learning
iven and then they are compared using structure and learning-related
ased on the comparison results and the mentioned properties, a
n-based learning algorithm for fuzzy systems [8-10] is brought into
ompared with the considered neuro-fuzzy methods. The advantages of
 as they relate to practically important properties; such as the simplicity

e initial fuzzy system, the avoidance of non-firing states, linguistic
y, etc., are emphasized.

zzy Inference Models
y system of zero order [7], the antecedent part of each rule is composed
variables and the consequent is a crisp value. Hence, in a system
 xj, j=1,2, …, , and one output, y, the rth rule, 1 ≤ r≤ k, is expressed as p

 (1) .yisyTHEN,Aisxand...andAisxandAisx rprpr22r11

 R. Monroy. (Eds.)
rtificial Intelligence Theory
omputing Science 16, 2005, pp. 163-172

In (1), Ajr are the rth rule fuzzy sets assigned respectively over the input variables xj
and yr is the rth rule crisp consequent. Based on the rules structure, the number of
membership functions (MF’s) on each input variable is equal to the number of rules
and each MF on an input variable participates in only one rule.

The output value corresponding to input vector xi = (x1i, x2i, …, xpi) is computed using
a weighted average formula as follows:

 ∑∑ === k
1r rir

k
1r rii .hyhy (2)

The use of product for “and,” which is applied in neuro-fuzzy methods, gives the
firing strength of rule r expressed as:

 . (3) ∏ == p
1j jijrri)(xAh

3 Neuro-Fuzzy Learning Methods
Two main neuro-fuzzy learning approaches are of interest here: the conventional one
developed in [1-4] and the new approach [6].

3.1 Conventional Neuro-Fuzzy Methods

Referring back to Section 2, we note here that Eq. (2) was used by Wang and Mendel
[4] and Nomura [3]. Ichihashi [1,2] used a simplified version of (2) to get the system
output:
 (4) .yhy k

1r rrii ∑ ==
Ichihashi and Wang-Mendel used Gaussian MF’s while Nomura used triangular ones.

A11 and
A21

A13 and
A23

A12 and
A22

A14 and
A24

A11 A12 A13 A14

A24

A23

A22

A21 x1

x2

A12 A13
A11 A14

A22

A21
A23

A24

A11 and A21

A12 and A22

A13 and A23

A14 and A24

x1

x2
Fig. 1. Conventional neuro-fuzzy

system with non-firing states
Fig. 2. Conventional neuro-fuzzy system

with no non-firing states

To avoid initial non-firing states, the firing strength of at least one rule (See (3)) and
for any input xi must differ from zero. Hence, any region in the input space must be
covered by all the MF’s of at least one rule. This requires a special setting of the
initial MF’s. For a system with two inputs, say, there has to be as many MF’s having
the same shape on each input as there are distinct ones. Fig. 1 illustrates the case of a
4-rule and 2-input system where non-firing states exist if xi is anywhere in the regions
outside those assigned for the rules. In Fig. 2, however, non-firing states are avoided
since the MF’s are assigned as required. Undoubtedly, the process of initial MF’s and
rules assignments gets more difficult when the number of these MF’s and rules
increases and when the system has more than two inputs (See Section 3.3.4).

164 J. Saade, A. Fakih

When n training input-output data (xi, yid), where i = 1,2,…n, are given, then they are
used in an error back-propagation learning to modify the parameters of an initial
fuzzy inference system, whose form is given in (1), and minimize the data
approximation error. The following error function is usually adopted:
 (5) .2/)yy(2

iidiE −=

The center and width of triangular MF’s, the mean and variance of Gaussian ones and
the crisp consequents are updated by the gradient-descent method:

 , (6) a/)t(iy)]t(iyidy[)t(a]a/)t(iE[)t(a)1t(a ∂∂−+=∂∂−=+ αα

where α is a learning rate, t denotes the current iteration and a is the parameter of
concern .

Once a data pair (xi , yid) is presented to the system and the system parameters are
updated based on (6), then the system output for the same input xi changes at each
update and also the error Ei. The tuning of the system parameters for the input data xi
stops when the step size, di= | Ei(t+1) – Ei(t)|, between two consecutive iterations
drops below a given threshold. Then another data pair is presented to the system and
the procedure is repeated. When all the data are presented to the system (learning
epoch), the total error E is calculated as follows:

 (7) .n/)yy(n/E2E n
1i

2
iid

n
1i i ∑∑ == −==

If this error is smaller than some desired error, Ed, the learning stops. If not a new
learning epoch begins. However, the performance of repeated epochs would not
necessarily lead to E ≤ Ed. Hence, the number of epochs is also be considered as a
stopping criterion.

In the above-described type of learning (pattern mode), the tuning of the system by a
given data (xi , yid) affects the tuning of the system by all the subsequent data points.
This effect is absent in the batch learning mode since the parameters are updated only
after the whole data set is used. Actually, for a point (xi,yid), the adjustment

)t(a)1t(aai −+=∆ of a given parameter a is still computed as in (6). But, this
adjustment is stored. When all the data pairs have been used, the total adjustment is
computed as In fact, batch learning is equivalent to the use of (6)
with replaced by

.n/a2a n
1i i∑= = ∆∆

iE E .

3.2 New Neuro-Fuzzy Approach

The major difference between this approach (Shi and Mizumuto [6]) and the
conventional ones is that all the combinations of the MF’s assigned over the input
variables are used to form the antecedents of the rules. This difference along with
pattern learning entails modifications in the properties of the algorithm. An overview
of the new approach is provided for a system with two inputs.

Let A1s, s = 1,2, …, l1 and A2q, q = 1,2, …, l2, be the MF’s on input variables x1 and
x2 respectively. Then, k=l1×l2 fuzzy rules are constructed in the form:

 Rule (s-1)l2 +q: If x1 is A1s and x2 is A2q, THEN y is y(s-1)l2+q. (8)

Comparison of Neuro-Fuzzy Systems with a Defuzzification-Based Algorithm... 165

With h[(s-1)l2+q]i=A1s(x1i)×A2q(x2i) denoting the firing strength of the rule in (8), then the
output is calculated as follows:

 ∑∑∑ ∑
= == =

+−+− +−
=

1 21 2

22

l

1s

l

1q

l

1s

l

1q
ql)1s(i]ql)1s[(i i]ql)1s[(2

hyhy (9)

3.3 Properties-Based Comparison

The conventional and new neuro-fuzzy learning approaches are compared here based
on properties related to their structure and the applied learning procedure.

3.3.1 Type of Membership Functions

Both conventional and new neuro-fuzzy methods require that the MF’s be
differentiable with respect to their parameters. This is due to the gradient-descent
method (6). Also, any change in the form of the used MF’s requires that the
parameters updating formulas be rederived.

3.3.2 Type of Logic Operations and Error Function

The use of Eqs. (2)-(4) and (9) in neuro-fuzzy means that the fuzzy AND, OR and
THEN are respectively represented by product, sum and product. This is essential for
the gradient-descent formula (6), and the involved derivative. Also, the adopted error
function influences the parameters updating formulas.

3.3.3 Type of Learning

The considered neuro-fuzzy algorithms, use pattern learning (Section 3.1). Referring
to Fig. 2 and (2)-(6) it can be seen that more than one training example affect the
same system parameters. Hence, by adjusting these parameters based on a data point
and then going to the next, should lead to a compromise between the parameters and
their affecting points that is not as good as the one obtained using the batch mode of
learning (Section 3.1). In fact, this aspect becomes more serious when more data
points affect the same system parameters, as in the new neuro-fuzzy approach
(Section 3.2) where the MF’s are less localized. Hence, the batch mode of learning
should be more suitable for the type of fuzzy inference structure used in the new
neuro-fuzzy method.

3.3.4 Setting of Initial MF’s and Rules

The major concern in the conventional methods is the avoidance of initial non-firing
[5]. Hence, on each system input, there must be a number, dmf, of distinct MF’s with
each repeated rmf times to give rules antecedents covering the whole input space. As
explained in Section 3.1, this is not simple especially when the number of rules, k ,
and input space dimension, , increase. To make things easier, two formulas are set.
With d

p

mf×rmf=k and rmf=dmf×(p-1), then

)1p(krand)1p(kd mfmf −=−= . (10)

Of course, p is application-dependent. Hence, k needs to be chosen to give integer dmf
and rmf. In the new neuro-fuzzy approach, the assignment of initial MF’s and rules is

166 J. Saade, A. Fakih

simple. As long as the adjacent MF’s on each input overlap (Fig. 3), then the coverage
of the entire input space is guaranteed and initial non-firing is avoided (Section 3.2).

3.3.5 Simplicity of Learning Formulas

The learning formulas in the conventional and new methods are determined using (6).
In the conventional methods, each MF is used once in the rules. This makes the
application of (6) with yi as in (2) or (4) and, thus, the learning formulas simple and
easily extended to systems with a high number of inputs as compared to the formulas
in the new approach, where each MF on a specific input is used with all the
combinations of MF’s on the remaining inputs (See (9) and also [6]).

3.3.6 Number of Tuning Parameters

For a given number of rules, k≥2 , and a number of input variables, p≥2 , the number
of tuning parameters in the conventional approach , (2p+1)k, is greater than that in the
new approach, which is given by 2(l1+l2+…+lp)+k, where lj is the number of
membership functions on input xj. This can be verified as follows: Since l1≤k,
l2≤k,…,lp≤k, with equalities that cannot be satisfied simultaneously except for: (a) k =
1 for any p, (b) p=1 for any k, then for k≥2 and p≥2, l1+l2+…+lp < pk. In cases (a)
and (b), which rarely occur in practice, the conventional and new neuro-fuzzy
approaches have the same number of parameters.

3.3.7 Fitting toTraining Data

A MF in the new neuro-fuzzy method covers a larger area in the input space as
compared to the conventional approach (Compare Figs. 2 and 3). Hence, for the same
set of data points, the 2 parameters of a MF in the new approach need to be adjusted
to accommodate a larger number of data. Consequently, the fitting to training data in
the new approach is less precise than that in the conventional one for the same
number of rules. Data fitting results are provided in Section 3.3.8.

3.3.8 Linguistic Interpretability

Based on the studies in [11,12], The linguistic interpretability problem in neuro-fuzzy
learning relates to the highly overlapping and complex MF’s obtained after training.
This prevents the simple assignment of linguistic labels to these MF’s and leads to the
generation of rules lacking a clear linguistic meaning. The issue of tradeoff between
precision and interpretability has also been noted in the mentioned studies.

A12A11

A22

A21

x1

x2

A11 and A21

A12 and A21

A12 and A22

A11 and A22

Fig. 3. Initial MF’s and rules for the

new neuro-fuzzy approach
Fig. 4. Final MF’s obtained in a Wang-Mandel

system

Comparison of Neuro-Fuzzy Systems with a Defuzzification-Based Algorithm... 167

The main reason behind the MF’s complexity obtained in the neuro-fuzzy methods
relates to the unconstrained learning of the MF’s parameters. As can be seen in Figs. 2
and 3, the parameters of the MF’s assigned on an input variable are changed based on
common data points; i.e., located in overlapping regions of the input space, and also
on separate data points. Hence, these MF’s tend to pass each other, exchange
positions, etc., as shown in Figs. 4 and 5. This would hinder the linguistic
interpretability of the final fuzzy system. The use of crisp rules consequents does also
contribute to the deterioration of the linguistic interpretability aspect.

Fig. 4 shows the final MF’s obtained over input x1 after training a 9-rule neuro-fuzzy,
Wang-Mendel system using 81 data points retrieved from the non-linear function used
in [6] and given below. The least data approximation error E=0.000612 was obtained
after performing 100 epochs. The MF’s interpretability did not improve for a smaller
number of epochs.
 . (11) 1x,x1,21.37/)1.0x4x2(y 21

2
21 ≤≤−++=

Fig. 5 shows the final MF’s over input variable x1 for a 9-rule fuzzy system trained by
the new neuro-fuzzy approach and the same data used in Wang-Mendel’s method.
The least data approximation error E=0.00194 was obtained after performing 16
epochs. After epoch 16, the error value got bigger and no improvement was obtained
in the MF’s interpretability.

Fig. 5. Final MF’s obtained in the new

neuro-fuzzy method
Fig. 6. Initial MF’s used in a Nomura system

3.3.9 Firing State Problem

In the considered neuro-fuzzy methods, the learning process changes the parameters
of the MF’s and even duplicated ones (conventional) become distinct during or after
learning (See [5]). Hence, even if the initial MF’s are as in Figs. 2 or 3, they may turn
out to be similar to those in Fig. 1 or having no overlap between adjacent ones due to
the unconstrained learning. This causes non-firing states. Hence, the learning may not
complete the specified number of epochs. Fig. 6 shows the initial MF’s used on x1 and
x2 in a 9-rule Nomura system trained using the 81 data points noted in Section 3.3.8.
The learning stopped after the second epoch.

4 Defuzzification-Based Learning
A new defuzzification-based algorithm for learning fuzzy rules [8-10] is first
summarized here, and then, compared with the considered neuro-fuzzy ones. The
comparison is based on the properties addressed in Section 3.3.

168 J. Saade, A. Fakih

4.1 Defuzzification-Based Algorithm

Consider a two-input, one-output fuzzy inference system. Let A1s, s = 1,2…l1, and
A2q, q = 1,2,…,l2 be overlapping MF’s assigned on input variables x1 and x2
respectively and in a manner that the specified ranges of these variables are covered.
Then, k=l1×l2 fuzzy rules are constructed as in (8) but with y(s-1)l2+q replaced by
overlapping MF’s assigned on the output variable y and denoted as C(s-1)l2+q for
1≤[(s-1)l2+q]≤l1×l2. These MF’s do not need to be all distinct but they have to cover
the entire specified range of the output variable.

The fuzzy output, corresponding to a crisp input pair xi=(xli , x2i), is obtained using
the CRI [13]:

)]y(C)x(A)x(A[max)y(C ql)1s(i2q2i1s1
ll]ql)1s[(1

i0 2
212

+−
×≤+−≤

∧∧= . (12)

The fuzzy OR, AND and THEN are represented here by maximum, minimum and
minimum respectively. Other operations can be used as well and (12) can be
generalized easily to systems with higher dimensional input spaces. Now,
defuzzification applies to the normalized version of C0i(y) , denoted C0in(y), as [8-10]:

 . (13) ααδαδδ d)](c)1()(c[)]y(C[F 21
1
0in0 −+= ∫

[c1(α),c2(α)] is the α-level set of C0in(y) and δ is a parameter whose values are in [0,1].
Eq.(13) is used to train initial fuzzy systems based on input-output data. All initial
rules consequents are required to be equal to the left-most output fuzzy set, which is
to be formed by a flat and a decreasing part or a decreasing part only.

Given the training input-output data (xi, yid), with xi = (x1i, x2i, …, xpi), and xi, yid
being within the specified input and output ranges, the learning starts with an initial
fuzzy system as specified above. The algorithm computes the fuzzy outputs for all xi’s
using (12) and then defuzzifies their normalized versions using (13) with δ=1. Here,
due to the above-noted initial rules consequents, all the defuzzified values will be
equal to the smallest value of the output range. Hence, F1[C0in(y)] ≤yid for all i=1, 2,
…, n. For these defuzzified values, the total error E is computed using some error
function, which could be as in (7) or any other function, and compared with a desired
error Ed. If E≤Ed , then the learning stops. Otherwise, δ is decreased from 1 to 0
passing by discrete values. For each δ, the error is computed and compared with Ed.
The decrease in δ causes an increase in the defuzzified values. They are then made
closer to the desired outputs. Whether the change in δ satisfies the error goal, then the
learning stops. Otherwise, the algorithm starts another learning round (or epoch) from
δ = 1 but with new rules.

These new rules are obtained by raising each rule consequent by one fuzzy set. If this
leads to a violation of F1[C0in(y)]≤yid, it can be reestablished by repeatedly lowering
the consequents of the rules triggering one fuzzy output with defuzzified value greater
than its desired counterpart. Once the inequality is reinstated, then the decrease in δ is
repeated and the error is computed and compared with Ed . This process is repeated
until either the error goal is satisfied or no more raise in the rules consequents is

Comparison of Neuro-Fuzzy Systems with a Defuzzification-Based Algorithm... 169

possible or when the raise and lowering of the rules consequents result in a previously
obtained system. When the learning ends, the algorithm delivers the final fuzzy
system, the resulting error and the final δ value. A complete description and
justification of the learning steps in this algorithm was offered in [9].

4.2 Properties-Based Comparison with the Neuro-Fuzzy Algorithms

4.2.1 Type of Membership Functions

Unlike the considered neuro-fuzzy learning methods, the defuzzification-based
algorithm can accommodate any type of MF’s. This is because the learning is based
on the use of (12) and (13) with no derivatives involved. Also, changing the form of
the MF’s does not require new formulas for learning.

4.2.2 Type of Logic Operations and Error Functions

Again, since no derivatives are used, then there is no restriction on the use of
operations for AND, OR and THEN as in the considered neuro-fuzzy approaches.
Furthermore, since the error function is not differentiated, then any error function;
such as, the mean-square error, (7), root mean-square error, mean absolute error, etc.,
can be used.

4.2.3 Type of Learning

The objective of the learning process applied in the deffuzification-based algorithm is
to reduce the total error resulting from the whole data set rather than the point-wise
error. So, the type of learning applied here is compatible with batch mode. This is
preferable due to the existence of only one parameter and a fixed number of output
fuzzy sets from which the choice is made to form a good compromise for all the data
points (See Sections 3.1 and 3.3.8).

4.2.4 Setting of Initial MF’s and Rules

As explained in Section 4.1, the setting of the rules antecedents is easy and is done in
the same way as in the new neuro-fuzzy approach. Hence, with overlapping MF’s
over each input, initial non-firing is avoided (See Eq. (12) and Section 3.3.4). Further,
the initial rules consequents are equal to the left-most of the fuzzy sets assigned over
the output. This guarantees that for δ=1 the defuzzified output for any crisp input be
equal to the lowest value of the output range. Requiring also that the right-most of the
fuzzy sets assigned over the output be formed by a flat and an increasing part or an
increasing part only guarantees that no defuzzified output for any input and any
δ∈[0,1] exceeds the highest value of the output range. These can be checked easily by
referring to (12), (13). In the considered neuro-fuzzy approaches, however, it is not
specified how the initial crisp consequents are assigned. Also, we do not have bounds
on the system outputs nor specified values for the range of the output variable.

4.2.5 Simplicity of Learning Formulas

The defuzzification formula (13) is the one used for learning and it applies to the
output fuzzy set after it is determined using (12). Hence, the learning formula remains
simple even if the dimensionality of the system input or the number of rules increases.

4.2.6 Number of Tuning Parameters

170 J. Saade, A. Fakih

In the defuzzification-based algorithm, there is only one crisp parameter, δ, to be
updated. However, if we consider the fuzzy consequents of the rules, which are also,
changed, then the total number of parameters is equal to (k+1). This is less than the
number of parameters used in the neuro-fuzzy methods (Section 3.3.6).

4.2.7 Fitting to Training Data

The data fitting in the defuzzification-based algorithm is expected to be less precise
than that in the considered neuro-fuzzy approaches. This is because the algorithm has
a smaller number of parameters.

4.2.8 Linguistic Interpretability

The learning process described in Section 4.1 does not change the initial MF’s
assigned over the system inputs. Also, the consequents of the rules are selected from
specified fuzzy sets over the output variable. Hence, with the input and output fuzzy
sets assigned appropriately to permit a simple and clear linguistic labeling, then the
generated rules will have a clear linguistic meaning. This serves well the issue of
linguistic representation of knowledge but it is at the expense of accuracy as expected
(See [11,12]). Data over-fitting, however, hinders the noise insensitivity and the
generalization capability of the learning algorithm as shown in [9,14].

A 9-rule fuzzy system, with three triangular MF’s on each input (as in Fig.6) and 7
triangular MF’s on the output, was trained by the defuzzification-based algorithm.
The 81 data noted in Section 3.3.8 were used. The final system had an error
E=0.01234 and δ= 0.45.

4.2.9 Firing State Problem

Since the input MF’s are not changed by learning, then unlike the considered neuro-
fuzzy methods, the problem of non-firing states does not arise during or after learning.

5 Conclusion
This study has first provided a description and comparison between conventional and
a new neuro-fuzzy system from the point of view of structure and learning-related
properties. Both approaches require differentiable MF’s, use fixed logic operations
and error function, apply pattern learning and suffer from non-firing states during or
after learning and from the lack of good linguistic interpretability. The new neuro-
fuzzy approach, however, turned out to have a simpler setting of initial MF’s and
rules to avoid initial non-firing and smaller number of tuning parameters. Yet, the
conventional approach has less complex learning formulas and more precise data
fitting.

Then, a defuzzification-based algorithm has been summarized and shown to possess
better properties than the considered neuro-fuzzy approaches. It does not require
differentiable MF’s nor fixed logic operations and error function. Setting the initial
MF’s and rules is even simpler than that in the new neuro-fuzzy method. The
possibility of non-firing during of after learning is eliminated. Also, the algorithm
provides completely interpretable Mamdani-type fuzzy systems with rules having
fuzzy antecedents and consequents. Further, the algorithm employs batch learning,
and its formulas apply easily to higher dimensional input spaces.

Comparison of Neuro-Fuzzy Systems with a Defuzzification-Based Algorithm... 171

Although the algorithm provides less precise data fitting, this is not a disadvantage
since it first provides fuzzy systems, which can easily be given a clear linguistic
meaning. Besides, the available data in practice are noisy. This makes the reduced
precision a needed aspect to improve noise insensitivity and generalization
capabilities, as shown in [9,14]. Also, fuzzy modeling becomes more consistent with
Zadeh’s principle of “tolerance for imprecision” [13].

In fact, performance criteria related to noise insensitivity and generalization
capabilities were introduced in [14] and the algorithm was examined and compared
with ANFIS [15] using non-linear functions and a practical robot navigation case
[14,16]. The performance advantages of the algorithm were demonstrated in these
studies. Criteria-based performance comparison should also be done with the
considered neuro-fuzzy approaches and also with an advanced method [17]
accounting for noisy data.

References
1. Ichihashi, H.: Iterative Fuzzy Modeling and a Hierarchical Network, Proc. 4th IFSA Congr.,

Brussels, (1992) 49 -52.
2. Ichihashi, H., Turksen, I.B.: A Neuro-Fuzzy Approach to Data Analysis of Pairwise

Comparisons,” Int. J. Approximate Reasoning, 9 (3), (1993) 227 -248.
3. Nomura, H., Hayashi, I., Wakami, N.: A Self-tuning Method of Fuzzy Control by Descent

Method, Proc. IEEE Int. Conf. on Fuzzy Systems, San Diego, 1992, 203- 210.
4. Wang, L.X., Mendel, J.M. :Back-propagation Fuzzy System as Nonlinear Dynamic System

Identifiers, Proc. IEEE Int. Conf. on Fuzzy Systems, San Diego, 1992, 1409-1416.
5. Shi, Y., Mizumoto M.: Some Considerations on Conventional Neuro-fuzzy Learning

Algorithms by Gradient Descent Method, Fuzzy Sets and Systems, 112, (2000) 51-63.
6. Shi, Y., Mizumoto M.: A New Approach of Neuro-fuzzy Learning Algorithm for Tuning

Fuzzy Rules, Fuzzy Sets and Systems, 112, (2000) 99-116.
7. Takagi, T., Sugeno, M.: Fuzzy Identification of Systems and its Application to Modeling and

Control, IEEE Trans. Systems, Man and Cybernetics, 15(1), (1985) 116-132.
8. Saade,J.J.: New Algorithm for the Design of Mamdani-type Fuzzy Controllers, Proceedings

of EUSFLAT-ESTYLF Joint Conference, Palma, Spain, Sept. 22-25, (1999) 55-58.
9. Saade, J.J.: A Defuzzification-based New Algorithm for the Design of Mamdani-type Fuzzy

Controllers, Mathware and Soft Computing, 7, (2000) 159-173.
10. Saade, J.J.: A Unifying Approach to Defuzzification and Comparison of the Outputs of

Fuzzy Controllers” IEEE Trans. Fuzzy Systems, 4 (3), (1996) 227-237.
11. Li, Y., Deng, J.M., Wei, M.Y.: Meaning and Precision of Adaptive Fuzzy Systems with

Gaussian-type Membership Functions,” Fuzzy Sets and Systems, 127, (2002) 85-97.
12. Paiva, R.P. ,Dourado, A.: Interpretability and Learning in Neuro-fuzzy Systems, Fuzzy Sets

and Systems, 147, (2004) 17-38.
13. Zadeh, L.A.: Outline of a New Approach to the Analysis of Complex Systems and Decision

Processes, IEEE Trans. Systems, Man and Cybernetics, 3(1), (1973) 28-44.
14 Saade, J.J., Al-Khatib, M.: Efficient Representation of Non-linear Functions by Fuzzy

Controllers Design Algorithms, 7th IEEE International Conference on Electronics, Circuits
and Systems, Dec. 17-19, (2000) 554-557.

15. Jang, J.S.R.: ANFIS: Adaptive-network-based Fuzzy Inference System, IEEE Trans.
Systems, Man and Cybernetics, 23, (1993) 665-685.

16. Al-Khatib, M., Saade, J.J.: An Efficient Data-driven Fuzzy Approach to the Motion
Planning Problem of a Mobile Robot, Fuzzy Sets and Systems, 134, (2003) 65-82.

17. Shi, Y., Mizumoto, M.: An Improvement of Neuro-fuzzy Learning Algorithm for Tuning
Fuzzy Rules, Fuzzy Sets and Systems, 118, (2001) 339-350.

172 J. Saade, A. Fakih

Evolutionary Computation
and Genetic Algorithms

Intelligent genetic algorithm: a toy model
application

Jaime Mora Vargas1, Neil Hernández Gress1, and Miguel González Mendoza1

Instituto Tecnológico y de Estudios Superiores de Monterrey,
Campus Estado de México, Carr. Lago de Guadalupe Km. 3.5

Atizapán de Zaragoza, Estado de México, México
{jmora, ngress, mgonza}@itesm.mx

http://www.cem.itesm.mx

Abstract. We argue that the performance of a genetic algorithm can be
improved by the codification of its operative rates into the chromosome.
In the case of the flowshop problem the claim is that mutation and
crossover rates allow the genetic algorithm to adapt better and faster
than the traditional genetic algorithm. We support our claim with a
simple “toy model” with two instances of flowshop problem, an special
case of scheduling with multiple applications to industrial problems. We
refer to that genetic algorithm as Intelligent Genetic Algorithm (IGA)
since its ability to self-modify its operative characteristics.

1 Introduction

Genetics algorithms have been applied to various optimization problems (Gold-
berg [5]). In this paper, a genetic algorithm is improved using local search pro-
cedures, and self-adaptation rates of genetic operators.

In the literature, many hybrid algorithms ([10, 4, 7, 14]) of GA’s were pro-
posed for flowshop optimization problems, those algorithms are a combination
of traditional GA and artificial intelligence techniques (e.g tabu search, simulated
annealing). In those studies, it was clearly shown that the performance of GA’s
for scheduling problems was improved using neighborhood search algorithms.

Flowshop problems are included into scheduling problems. Great efforts are
devoted to its economical importance. Unfortunately, finding optimal scheduling
for a general production process is an NP-hard problem (Garey and Johnson,
[3]). This means that traditional operations research techniques such as inte-
ger programming (branch and bound techniques [13]) or dynamic programming
(Bellman and Dreyfus [1]) are not adequate to deal with large scale problems.
Therefore, the interest of many researchers has been oriented to find good solu-
tions (not always a global optimum) in a reasonable time. Considering this, the
use of metaheuristics techniques are well suited.

A major issue for metaheurists is the fine-tuning for parameters, i.e tabu
list length (for tabu search), initial temperature (for simulated annealing) or
crossover and mutation rates (for genetic algorithms). In this article, a modifi-
cation is made to traditional GA, creating the ”intelligent” Genetic Algorithm

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 175-184

(IGA) which doesn’t need fine tuning of crossover and mutation rates. This
technique was originally used with simple optimization landscapes ([17]) and to
travelling salesman problem instances ([18]) with encouraging results.

This article is organized as follows: section 2 includes a general description
of the flowshop problem as well as details for the 2 treated problems, also a
brief introduction to GA is provided. Section 3 contains specific details about
representation of flowshop problem, Section 4 includes details about the exper-
iments done, Section 5 shows the most representative graphics and comments
about experimentation and Section 6 has the conclusions and future work of this
article.

2 Problem Description

Flowshop problems in particular, are a special case of scheduling problems and
scheduling problems arise in the combinatorial optimization area. General as-
sumptions for flowshop are (more details in Dudek et al. [2]): 1) jobs are to be
processed by multiples stages sequentially, 2) there is one machine at each stage,
3) machines are available continuously, 4) a job is processed on one machine at a
time without preemption, and 5) a machine processes no more than one job at a
time. For this paper, n jobs are processed in the same order on m machines. Con-
sidering this, this paper works with a sequencing problem of flowshop scheduling
of n-jobs.

Considering notation from Ishibuchi [8], the completion time and process-
ing time of job j on machine i are tC (i , j) and tP (i , j) respectively. The n-
dimensional vector x = (x1, x2, . . . , xn) represents the sequence of n jobs to be
processed, where xk denotes the k-th processing job. Completion time for each
sequence x is calculated by:

tC(1, x1) = tP (1, x1) (1)

tC(i, x1) = tC(i− 1, x1) + tP (i, x1), i = 2, 3, . . . , m, (2)

tC(i, xk) = tC(i− 1, xk−1) + tP (i, xk), k = 2, 3, . . . , n, (3)

tC(i, xk) = max{tC(i− 1, xk), tC(i, xk−1)}+ tP (i, xk),
i = 2, 3, . . . , m; k = 2, 3, . . . , n (4)

Flowshop scheduling problems are to determine the sequence of x of n jobs
based on a given scheduling criterion. According to Johnson’s work [11] the
reduction of makespan if one of the most extended criteria, also reduction of
tardiness is employed. The makespan is the completion time of the last job:

Makespan(x) = tC(m,xn) (5)

176 J. Mora, N. Hernández, M. González

Also maximum tardiness is other criteria used, it is defined as the maximum
tardiness of the n jobs to schedule, that is:

Tardiness =
max{tC(m, 1)− d1, tC(m, 2)− d2, . . . , tC(m, n)− dn} (6)

tC > d

where di represents due date for job i.

2.1 Genetic Algorithms

Genetic algorithms are one of the heuristic optimization algorithms widely used
by many researchers in solving various problems, were introduced by Holland
[6]. Genetic algorithms mimic the mechanism of genetic evolution in biological
nature. In biological terms, it consist of a chromosome composed of genes, each
one of them with several alleles, into the optimization field, this chromosome is
a string that usually represents a possible solution to some optimization prob-
lem, each string is composed of bits with specific values. Initially, a number of
chromosomes form an initial pool of solutions. The process of crossover and mu-
tation will be carried out in the pool, after that an evolution is completed and
new chromosomes (offspring) will be generated.

GAs have two major processes. First, GAs randomly generate new solutions.
Second, the evolution of those initial solutions is done according to the genetic
operators such as reproduction (selection of the fittest), mutation (exploration
operator) and crossover (exploitation operator).

3 Problem Representation

3.1 Chromosome

Configuration for flowshop problem using GA uses a string base codification,
where each individual in the population represents a possible sequence of jobs to
be done. For example, the sequence x = (1, 3, 2, 4) represents a sequence of 4 jobs,
where job 1 is done first, followed by jobs 3, 2 and 4. That kind of representation
is currently used to solve scheduling problems using GA.

3.2 Genetic operators

In this paper, two genetic operators were used : crossover and mutation in order
to exploit results (crossover) and explore solutions (mutation). The crossover
operator is the two-point order crossover and for mutation, it is used the shift
change, details for such operators can be found in [14]. Such operators work
selecting a random number and compare to the operation rates if it is smaller
then the operator is applied to that individual.

In order to improve search for new solutions, a local search procedure was
used, this procedure consisted in the permutation of size 1 for every population

Intelligent Genetic Algorithm: A Toy Model Application 177

element, selecting the best one. For example, for individual (1, 2, 3), the possible
neighbors would be (2, 1, 3), (3, 2, 1) and (1, 3, 2) this local search avoid the use
of large populations, also it doesn’t require important computational resources.

The reproduction of individuals is made using the so-called tournament re-
production of size t, where t=2, it function by selecting by random N/t sets of t
elements and passing the element with the highest fitness of each set to the next
generation, this procedure is done t times to assure that the population number
N remains constant. Ties broken by random.

For the IGA, the standard genetic operators for binary codification [5] were
used.

3.3 Fitness function

The fitness function used combines two objectives, minimize makespan and max
tardiness. Using equations 5 and 6 it is possible to create a global equation for
the i-th individual, that is:

f(i) = −log(MaxTardinessi)− log(Makespani) (7)

The log function is used in order to re-normalize the values of makespan and
tardiness. As the GA nature is maximize, the use of ”-” allows to get better
results (i.e., small makespan and small tardiness)

3.4 Intelligent GA

The “Intelligent Genetic algorithms” are a modification of traditional genetic
algorithms in which the crossover and mutation rates are codified into the chro-
mosome, for this paper, a string of 5 bits was used to codify in binary. In this
manner, the max value (in decimal) is 25 = 32 so it is possible to configure
value rates between 0 and 1 with an interval of 1/32 = 0.03125. The translation
process consists in translate from binary to decimal and divide that value by the
max value possible. Using this configuration, a complete individual is by exam-
ple [1, 2, 3, 4|00101|11000] representing that the first job to be processed is job
1, followed by jobs 2, 3 and 4, also the mutation probability is 00101 = 0.15625
and the crossover rate is 11000 = 0.75. Two types of genetics operators were
used, those applied to the flowshop configuration and those applied to the op-
erators rates configuration, for the flowshop configuration, two-point order (for
crossover) and shift change (for mutation) were used. The traditional two par-
ents, two points crossover and change between 0 and 1 mutation operator were
used to the chromosome section that codifies operators rates. The sequence used
was: first apply operators to flowshop section followed by the application of
operators to codification rates section.

This self-codification allows the algorithm to avoid selecting optimal muta-
tion and crossover rates, a time-consumption task that must be completed before
run any standard GA. Special attention must be on IGA since self-adaptation
capacity allows to apply GA into time-dependent landscapes.

178 J. Mora, N. Hernández, M. González

4 Experiments

The experiments were realized using a flowshop problem of 5 machines-10 jobs
(5M10J) and 5 machines-30 jobs (5M30J).

Table 1. Processing times 5M10J

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10

m1 32 1 61 42 62 61 3 97 26 9

m2 21 27 87 45 59 24 71 34 20 28

m3 10 42 66 75 41 24 3 36 85 74

m4 51 19 23 85 86 81 93 31 75 23

m5 33 45 58 97 91 85 30 38 17 51

Table 2. Due date times, 5M10J

job Due date

j1 674

j2 396

j3 431

j4 369

j5 626

j6 597

j7 790

j8 437

j9 656

j10 780

Table 3. Processing times 5M30J (jobs 1-10)

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10

m1 32 1 61 42 62 61 3 97 26 9

m2 21 27 87 45 59 24 71 34 20 28

m3 10 42 66 75 41 24 3 36 85 74

m4 51 19 23 85 86 81 93 31 75 23

m5 33 45 58 97 91 85 30 38 17 51

Table 1 shows the processing times for job n in machine m, for example, job
2 in machine 2 takes 27 time units, job 10 in machine 5 takes 51 time units.
Table 2 shows the due date for each job. Tables 3,4 and 5 include the processing
times for 5M30J, table 6 shows the due dates for 5M30J problem.

Intelligent Genetic Algorithm: A Toy Model Application 179

Table 4. Processing times 5M30J (jobs 11-20)

j11 j12 j13 j14 j15 j16 j17 j18 j19 20

m1 47 5 35 88 84 40 79 94 56 13

m2 29 35 81 94 77 30 19 75 47 30

m3 43 19 49 85 79 55 34 93 64 50

m4 25 30 83 80 83 32 45 88 49 62

m5 50 40 85 78 77 49 80 48 44 20

Table 5. Processing times 5M30J (jobs 21-30)

j11 j12 j13 j14 j15 j16 j17 j18 j19 20

m1 43 38 65 92 78 45 67 71 57 31

m2 38 8 76 93 83 32 37 80 53 37

m3 47 27 41 79 79 35 38 69 55 33

m4 49 28 51 78 78 46 78 80 45 15

m5 43 17 78 83 82 46 35 86 61 33

Table 6. Due date times, 5M10J

job Due date job Due date job Due date

1 674 11 674 21 436

2 396 12 707 22 456

3 431 13 569 23 764

4 369 14 671 24 645

5 626 15 509 25 738

6 597 16 465 26 451

7 790 17 490 27 611

8 437 18 492 28 746

9 656 19 429 29 420

10 780 20 613 30 651

180 J. Mora, N. Hernández, M. González

5 Results

The experiments carried out where done considering the problems mentioned in
previous section, the objective of that experiments was to compare standard GA
versus Intelligent GA. Both GA types used a population size of 500 individuals,
and 510 generations. The provided results considers the average value for 20 runs
per experiment.

For the standard genetic algorithms several experiments where done using
different crossover and mutations rates. In this paper, results for fixed mp (mu-
tation probability) and cp (crossover probability) are provided, the graphs shows
results for mp = 0.4-cp = 0.1, mp = 0.01-cp = 0.01 which are compared with
the IGA performance.

-14

-13

-12

-11

-10

-9

-8

 0 100 200 300 400 500 600

A
ve

ra
ge

 F
itn

es
s

Generations

IGA

c0.4m0.1
c0.01m0.01

Fig. 1. Fitness comparison, 5 machines, 10 jobs.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 100 200 300 400 500 600

Generations

Mutation Rate
Crossover Rate

Fig. 2. Operative Rates, 5 machines, 10 jobs.

Figure 1 shows the comparison between average fitness for mp = 0.4-cp = 0.1,
mp = 0.01-cp = 0.01 and IGA considering 5M10J problem, data showed are the
average fitness for the entire population. For this case, mp = 0.01-cp = 0.01 and

Intelligent Genetic Algorithm: A Toy Model Application 181

-17.5

-17.4

-17.3

-17.2

-17.1

-17

-16.9

-16.8

 0 100 200 300 400 500 600

A
ve

ra
ge

 F
itn

es
s

Generations

IGA
c0.4m0.1

c0.01m0.01

Fig. 3. Fitness comparison, 5 machines, 30 jobs.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 100 200 300 400 500 600

Generations

Mutation Rate
Crossover Rate

Fig. 4. Operative Rates, 5 machines, 30 jobs.

182 J. Mora, N. Hernández, M. González

IGA have similar results. All three configurations find rapidly the optimal value
(at generation 25 aprox). It is important to mention that 5M10J problem has a
feasible space 10! = 3628800 size, which is very simple to solve using exhaustive-
search procedures, the reason to use such landscape is to gain experience with
the IGA and track their results.

The operative rates for genetic operators are showed in figure 2, one the
IGA has find the optimum, it reduces its mutation and crossover rate, the latter
achieving its stable value faster than mutation rate, this is related with the im-
pact of the operator, i.e. mutation is a more destructive operator than crossover,
then the search for new possible solutions continues by more time than the ex-
ploitation of results already found.

Figure 3 shows the comparison between mp = 0.4-cp = 0.1, mp = 0.01-
cp = 0.01 and IGA considering 5M30J problem, data showed are the average
fitness for the entire population. As this graph shows, it is clear that IGA have
better performance than mp = 0.01-cp = 0.01. The convergence of IGA take
more time than the others, the reason is that the IGA have to modified its
operative ranges. Also, mp = 0.01-cp = 0.01 has a better performance than
mp = 0.4-cp = 0.1, although mp = 0.4-cp = 0.1 goes faster to a local optimum,
moreover mp = 0.4-cp = 0.1 has more changes between every generation this is
because the mutation and crossover rates are relatively high, allowing to loose
good solutions.

Figure 4 shows the mutation and crossover rate along the 510 generations
of the experiment, note the changes in the rates, first descending to values of
0.15 for mutation and 0.16 for crossover. Again and similar to 5M10J mutation
rate takes more values before get stable. Both crossover and mutation rates
remains with the same value once an optimum is reached, and off course by the
population effect (all individual have the same operation rates).

6 Conclusions

This article presents an application of a called “Intelligent Genetic Algorithms”,
a type of genetic algorithm which is able to modify its operational rates in
order to achieve a global optimum. Such characteristic could be very important
specially for problems in which the environment changes over time. Also IGA
avoid fine-tuning of parameters, mostly always a time-consuming task.

The examples treated in the article are flowshop problems with 5 machines-
10 jobs and 5 machines-30 jobs problems, in both examples treated, IGA have
a better performance than standard GA, however it is possible to prove that
by adjusting standard GA parameters it could perform better that IGA. Then
the main application for IGA seems to be problems in which the environment
changes over time, since the IGA can adapt to changes modifying its operative
rates. In the case standard GA once the change occurs and since the majority
of population is in the “old optimum” it can not be able to move to the new
optima.

Intelligent Genetic Algorithm: A Toy Model Application 183

References

1. Bellman, R.E. and Dreyfus, S.E., Applied Dynamic Programming, Princeton Uni-
versity Press (1962)

2. Dudek R.A., Panwalkar S.S. and Smith M.L., The Lessons of Flowshop Scheduling
Search, Operations Research, Vol. 47 No. 1 (1992) 65-74

3. Garey, M. and Johnson, D.,Computers and intractability: A guide to the theory of
NPCompleteness. Freeman and Co.San Francisco (1979)

4. Glass C. A., Potts C. N., and Shade P., Genetic algorithms and neighborhood search
for scheduling unrelated parallel machines, Univ.Southampton, Southampton, U.K.,
Preprint Series OR47 (1992)

5. Goldberg, D.E., Genetic Algorithms in Search, Optimization, and Machine Learn-
ing, Addison-Wesley Publishing Company. Reading, Massachusetts (1989)

6. Holland, J.H., Adaptation in Natural and Artificial Systems, University of Michigan
Press, Ann Arbor MI (1975)

7. Ishibuchi H., Yamamoto N., Murata T., and Tanaka H., Genetic algorithms and
neighborhood search algorithms for fuzzy flowshop scheduling problems, Fuzzy Sets
Syst., Vol. 67 (1994) 81-100

8. Ishibuchi H., Murata T. and Tomioka S., Effectiveness of Genetic Local Search
Algorithms, Proc. 7th International Conference on Genetic Algorithms (1997) 505-
520

9. Ishibuchi H. and Murata T., A Multi-Objective Genetic Local Search Algorithm
and Its Application to Flowshop Scheduling IEEE Transactions on systems, man,
and cyberneticspart C: applications and reviews, Vol. 28 No. 3 (1998) 392-403

10. Jog P., Suh J. Y., and Gucht D. V., The effects of population size, heuristic
crossover and local improvement on a genetic algorithm for the traveling salesman
problem, Proc. 3rd Int. Conf. Genetic Algorithms (1989) 110-115

11. Johnson S. M., Optimal Two- and Three-stage Production Schedules With Setup
Times Included, Naval Research Logistics Quarterly, Vol. 1 No. 1 (1954) 61-68

12. Kursawe F., A variant of evolution strategies for vector optimization, Parallel Prob-
lem Solving from Nature, H.-P. Schwefel and R. Manner,Eds., Vol. 15 , Berlin Ger-
many (1993) 754-770

13. Lawler, E.L. and Wood, D.E., Branch and Bounds Methods: A survey”, Operations
Research, Vol. 14 (1966)

14. Murata T. and Ishibuchi H., Performance evaluation of genetic algorithms for
flowshop scheduling problems, Proc. 1st IEEE Int. Conf. Evolutionary Computat.
(1994) 812-817

15. Murata T. and Ishibuchi H., MOGA: Multi-objective genetic algorithms, Proc. 2nd
IEEE Int. Conf. Evolutionary Computat. (1995) 289-294

16. Schaffer J. D., Multi-objective optimization with vector evaluated genetic algo-
rithms, Proc. 1st Int. Conf. Genetic Algorithms (1985) 93-100

17. Stephens C.R. and Mora J., Effective Fitness as an Alternative Paradigm for Evo-
lutionary Computation I: General Formalism, Genetic Programming and Evolvable
Machines, Vol. 1, No. 4 (2000) 363-378

18. Stephens C.R. and Mora J., Effective Fitness as an Alternative Paradigm for Evo-
lutionary Computation II: Examples and Applications, Genetic Programming and
Evolvable Machines, Vol. 2, No. 1 (2001) 7-32

184 J. Mora, N. Hernández, M. González

Improved Ant Colony System using Subpath

Information for the Traveling Salesman Problem

Minyoung Yun and Inkyeom Kim

Department of Information and Communications Engineering,
Sungkyul University, Anyang, Korea

{alabama, kik}@sungkyul.edu

Abstract. Ant Colony System (ACS) applied to the traveling salesman
problem (TSP) has demonstrated a good performance on the small TSP.
However, in case of the large TSP, ACS does not yield the optimum
solution. In order to overcome the drawback of the ACS for the large
TSP, the present study employs the idea of subpath to give more infor-
mation to ants by computing the distance of subpath with length 3. In
dealing with the large TSP, the experimental results indicate that the
proposed algorithm gives the solution much closer to the optimal solu-
tion than does the original ACS. In comparison with the original ACS,
the present algorithm has substantially improved the performance. For
a certain graph, the solution performance has been enhanced up to 72.7
% by utilizing the proposed algorithm.

1 Introduction

Ant System(AS) is a meta-heuristic algorithm proposed by Dorigo et al.[1] that
has been inspired by the foraging behavior of ant colonies. Real ants are capa-
ble of finding the shortest path from a food source to their nest by exploiting
pheromone information. Ant System was applied to the complex combinato-
rial optimization problems such as the traveling salesman problem (TSP) and
the quadratic assignment problem (QAP). Currently many ongoing research ac-
tivities has been performed to investigate many different discrete optimization
problems like vehicle routing, sequential ordering, graph coloring, and routing
in communication networks.

In the present study, the Ant Colony System has improved the efficiency
of the existing ant system and it has been applied to analyze TSP. In context
with the Ant Colony System, the ants acting like agents perform parallel search
for the TSP and find a good solution. During this process, the ants are able to
exchange information each other indirectly but globally by using pheromone [5].
Each ant constructs the path for TSP with the iterative procedure to select a
next visiting city by jointly utilizing informations on the greedy heuristic and
the past experience. Several meta-heuristic search algorithm are applied to find
an optimal solution for TSP which is well known as a NP-hard problem.

The TSP can be expressed by a complete weighted graph G = (V, E). Here V
is a set of vertices and |V | = n, it represents all cities that the sales person has to

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 185-194

visit. The E denotes a set of edges. Each edge (i, j) ∈ E has a weight dij which
represents a distance between any two cities i and j (i, j ∈ V). Consequently, the
TSP can be converted to a Hamiltonian circuit problem which find a shortest
path from a starting city by visiting each city only once and returning to the
starting city on a complete weighted graph. The TSP is classified as symmetric
TSP and asymmetric TSP. In the asymmetric TSP, the distance of the paired
vertices (i, j), dij, could be different for the circulating direction. In other word,
there exists at least one edge which satisfies dij �= dji. In the symmetric TSP,
dij = dji is satisfied for every edges in E.

The original ACS algorithm is capable of finding an optimal solution for the
small size of TSP. The original ACS uses information on distance of adjacent
neighbors only. However, in case of the large TSP, ACS does not yield the opti-
mum solution. In order to overcome the drawback of the ACS for the large TSP,
the present study employs the idea of subpath to give more information to ants
by computing the distance of all possible subpath with length to construct a tour
for a solution. In dealing with the large TSP, the experimental results indicate
that the proposed algorithm gives the solution much closer to the optimal solu-
tion than does the original ACS. For a certain graph, the solution performance
has been enhanced up to 72.9 % by utilizing the proposed algorithm. In com-
parison with the original ACS, the present algorithm has considerably improved
the performance. The detailed discussion has been made for the existing and
proposed algorithm for the ant colony optimization to solve the large TSP with
a symmetry.

2 Ant Colony Optimization Algorithms

The Ant Colony Optimization(ACO) algorithm is easily applicable to handle
the TSP. In the ACO algorithm, the pheromone trails consist of the connecting
edges and τij represents the measure of possibility to visit a city j directly from
a city i. The heuristic information is expressed as ηij = 1/dij. The values of τij

and ηij are stored at pheromone matrix and heuristic matrix, respectively. For
each ant, tours are constructed by the following procedure : (1) choose a start
city in random fashion and place an ant; (2) according to values of τij and ηij,
construct a path by adding a city that the ant has not visited yet; and (3) after
all cities have been visited, go back to the starting city and complete one path.
After all ants have completed their tour, they may deposit a certain amount of
pheromone according to the tour they have constructed [7,8].

The Ant System(AS) is a initially developed ACO algorithm and it is quite
easy to apply the TSP. However, due to the simple pheromone updating rule,
there is a certain tendency the AS leads to the local optima situation. Therefore,
the AS gives the optimal solution only for the small TSP. To improve the perfor-
mance, several extensions of the AS was devised. These extensions include elitist
AS, rank-based AS, and MAX-MIN AS. The main difference between the orig-
inal AS and these extensions is the way to update the pheromone[4]. The ACS
algorithm is the framework of this study and it is the ACO algorithm by adopt-

186 M. Yun, I. Kim

ing the basic idea of the AS. Its performance has been improved by overcoming
the drawbacks of the AS. The ACS has been applied to various combinatorial
optimization problems and it has demonstrated a good performance.

The ACS proposed by Gambardella and Dorigo[9] differs from the AS in the
following features:

1. By using a more aggressive action choice rule, compared to the AS, the ACS
more actively exploits the search informations accumulated by the ants.

2. Pheromone evaporation and pheromone deposit take place only on the edges
belonging to the best-so-far tour.

3. Each time an ant uses an edge (i, j) to move from city i to city j , it re-
moves some pheromone from the edge to increase the room for selecting the
alternative paths.

In the initial stage of the ACS with a given graph G = (V, E) and |V | = n, m
ants (m ≤ n) are placed on m cities in random fashion. According to the tour
construction rule, each ant repeatedly chooses a next visiting city and constructs
a path. In this process, whenever an edge is added to a path, the local pheromone
updating rule is applied to update the pheromone on each edge. When the path
is constructed, the local search is applied to improve the constructed path. Then
the pheromone is updated only at the global optimal path with the minimum
length among all paths constructed so far. Figure 1 shows the ACS algorithm
for the TSP.

algorithm: ACS for TSP {

Initialize Data;

while (not terminate) {

place m ants at m cities;

repeat (for each ant)

apply tour construction rule to build a trail;

apply local pheromone updating rule;

until (construct a solution)

apply local search;

apply global pheromone updating rule;

}

}

Fig. 1. Algorithm: ACS for TSP

Improved Ant Colony System using Subpath Information for the Taveling... 187

2.1 Tour Construction Rule

If ant k is located at city i, then a next visiting city j can be chosen according
to the pseudo-random proportional rule, given by equation (1).

j =

{
arg maxl∈Nk

i
{τil[ηil]

β}, if q ≤ q0

J, otherwise
(1)

where β is a parameter which determines the relative importance of pheromone
τij versus heuristic information ηij, Ni

k is the set of the remaining cities to be
visited by ant k positioned on city i. q is a random variable uniformly distributed
in [0, 1], q0 is a parameter to satisfy the range, 0 ≤ q0 ≤ 1 , and J is a random
variable selected by the following probability distribution.

pk
ij =

[τij][ηij]β∑
l∈Nk

i
[τil][ηil]β

if j ∈ Nk
i (2)

In the equation (2), the probability to select an edge (i, j) in a path is dependent
on the amount of pheromone, τij and heuristic information, ηij. Each ant select
a city j as a next visiting city which has a large level of pheromone and a short
distance. If β = 0, the selection of a next city depends only on the pheromone
level, τij. Therefore, in the general situations, β > 1, according to reference[4],
a good performance is achieved at 2 ≤ β ≤ 5.

2.2 Local Pheromone Trail Update

Unlike the AS, the ACS uses a local pheromone updating rule. Whenever an
ant constructs a tour of the TSP and select an edge, the pheromone level for a
selected edge is updated by applying the local updating rule equation (3).

τij = (1 − ξ)τij + ξτ0 (3)

where ξ is the variable to satisfy the range, 0 ≤ ξ ≤ 1. According to numerical
experiment, the best performance is achieved at ξ =0.1 [4]. The value of τ0

represents the initial pheromone level and the best performance is obtained at
τ0 = 1/(nCmn), where n is the number of cities in the TSP and Cmn is the
length of a path constructed by the nearest-neighbor heuristic. In other word,
the pheromone level at each edge is initialized by the length of a path which is
constructed by the greedy method. By applying the equation (3), whenever an
ant selects an edge (i, j), its pheromone level, τij at a selected edge is reduced. As
a result, the once selected edge has the much lower probability to be selected by
the following ants. This treatment increases the probability to select the edges
that have not been visited yet and it prevents from a stagnation behaviour which
is a certain tendency to repeatedly choose an once selected edge. In other words,
ants do not converge to the generation of a common path. In this study, we only
consider symmetric TSP such that τij = τji.

188 M. Yun, I. Kim

2.3 Local Search

The local search is basically included in the ACO algorithm. After all ants have
completed to find their own path, the locally optimum solution can be obtained
by 2-opt or 3-opt procedure which exchange two or three edges involved in the
constructed path. If this local search is applied to construct a path of the TSP,
the ACO algorithm together with a local search can improve the solution con-
structed by an ant[10]. In this proposed algorithm, a 3-opt method is employed.

2.4 Global Pheromone Trail Update

In the procedure of a Global Pheromone Trail Update, the pheromone update is
allowed only for the most optimum path among all constructed paths, according
to the equation (4).

τij = (1 − ρ)τij + ρΔτ bs
ij , ∀(i, j) ∈ T bs (4)

where Δτ bs
ij is the amount of pheromone to be added to edge (i, j) in the op-

timal path. Cbs represents the length of global optimal solution. Thus, the re-
lation between the pheromone level and the optimum path length is expresses
as Δτ bs

ij = 1/Cbs . The parameter ρ is the pheromone evaporation rate. The
deposited pheromone is decreased with increasing the pheromone evaporation
rate, ρ. In experiments, the best performance is obtained at ρ = 0.1.

3 Proposed Algorithm

The ACS algorithm adopts a global pheromone update as well as a local pheromone
update. If the global pheromone update is used, the information about the best
path among all constructed paths is delivered to ants which start to search
for the solution. On the other hand, the local pheromone update decreases the
pheromone on the edge which is just visited by ants. Therefore, this procedure
increases the probability to select the edges that have not been visited yet and it
can avoid a stagnation behaviour and increase a room to find a optimum path.
However, in case of a graph having a large number of vertices, it is difficult to
find the optimal path by only using the heuristic method.

In the ACS, m ants are placed randomly on m cities and start to search
for the optimal path. During the searching process using the local pheromone
updating rule, if the current visiting city is highly probable to be included in an
optimal path, the probability to find an optimum path is definitely increased by
constructing the path based on the current visiting city.

In the present study, to give the more precise information to ants for con-
structing a optimum path, the value of ηij in equation (1) is not determined just
by using the distance of adjacent neighbor and it is determined by using the sub-
path sw with length w, 1 ≤ w ≤ n. Here w refers the number of edges including
subpath. Using the information about the length of subpath sw, we precompute
the length of all city i based subpaths which can be constructed from w number

Improved Ant Colony System using Subpath Information for the Taveling... 189

of edges, (i, j)(j, k)...(x, t). Then the next visiting city is selected as a city which
is located at the subpath with the minimum length among all possible subpaths.
In other words, in the searching process of a next visiting city j from the city i.
the tour path is constructed by selecting a city which minimize the value of sw.
According to this algorithm, the equation (1) can be modified as follows:

j =

{
arg maxl∈Nk

i
{τil[ηil

sw]β}, if q ≤ q0

J, otherwise
(5)

Through numerical procedure of this algorithm, we need to make the list of the
nearest neighbor first, and then we have to find the minimum distance between
the neighboring cities in the list. For instance, if we assume the subpath length
w = 3, we first compute the distance of subpath (i, j)(j, k)(k, t), dij + djk + dkt

for every city j adjacent to the current city i. Then the nearest neighbor list,
li is arranged by sorting with an ascending order. As illustrated in the Figure
2, this procedure marginally increases the total execution time owing to its pre-
processing treatment. As implied in the local pheromone updating method rep-
resented by equation (3), it is quite important how to evaluate a initial value of
pheromone, τ0 because it continuously influences the tour construction process.
In the original ACS, a initial value of pheromone is obtained by τ0 = 1/(nCmn).
Here Cmn is the length of path which is constructed by the Greedy method. On
the other hand, in the present proposed algorithm, a initial value of pheromone
is evaluated by the following expression (6) which has a governing parameter,
Csw.

τ0 = 1/(nCsw) (6)

Since Csw is generally smaller than Cmn, every path in this proposed algorithm
has the much higher level of initial pheromone. Moreover, using equation (3)
together with a initial value of pheromone, τ0 governed by the subpath infor-
mation Csw, the present proposed algorithm can search the adjacent neighbors
more precisely.

If the original ACS is applied to the TSP with large number of cities, it
is very difficult to find an optimal solution. In the search procedure of optimal
solution for the TSP, if the correct and optimal algorithm is applied, the shortest
path is quickly found at the beginning of the search process. Otherwise, the
optimum path could be constructed by gradually improving the solution through
the numerous iterations. However, in case of a large TSP, it is nearly impossible
to construct a optimal path by applying the iterative search for all possible paths.
Therefore, it is necessary to include cities in a path which are quite probable to
construct the optimal path. By setting the initial value of pheromone large, the
proposed algorithm constructs the path much closer to a optimal solution at the
initial stage than does the original ACS algorithm. In other words, the proposed
algorithm can increase a probability to find an optimal path at the beginning
of path construction stage by choosing a nearest neighbor with the subpath
information. However, it is necessary to note that, if the length of subpath, w,

190 M. Yun, I. Kim

is set to a quite large value, it is susceptible to be a local minima. If the length
of subpath, w, is set to a small value, then there is no difference with original
ACS and the algorithm performance is greatly reduced. Therefore, it is very
important to set sw with the proper value. Figure 2 shows the schematics of
proposed algorithm. Here the italictype parts represent the major improvements
against the original ACS.

algorithm: Proposed ACS for TSP {

preprocessing steps:

construct a distance matrix;

construct a nearest neighbor list by sw;

Initialize Data;

while (not terminate) {
compute τ0 with sw : τ0 = 1/(nCsw);
place m ants at m cities;

repeat (for each ant)

apply tour construction rule to build a trail;

apply local pheromone updating rule;

until (construct a solution)

apply 3-opt local search;

apply global pheromone updating rule;

}
}

Fig. 2. Proposed Algorithm

4 Experimental Results and Discussion

The proposed algorithm has been implemented into the aco-code in reference
[11]. For the validation, we used the graphs in the TSPLIB library [12]. The ex-
periments on the proposed algorithm have been performed at Enterprise RedHat
2.1 (PentiumIV 1.7 GHz, 768MB). For each test, we have chosen the parameters
which were proved to yield the optimal solution from the previous experiments.
These problem parameters are given as ξ = 0.1, ρ = 0.1, β = 2, q0 = 0.9 and
m = 10. The initial value of pheromone in the equation (6) is evaluated by using
τ0 = 1/(nCs3) and the information of subpath is obtained from s3. For each
ant, 100 seconds of CPU time are allocated for one search process and the path
search is repeated 10 times. For each graph, the optimum and averaged value is
obtained from the results of 10 executions.

Table 1 shows the results obtained from the original ACS and the proposed
algorithm for the graphs with less than 1000 cities for the length of subpath
3, s3. Here, ’Instance’ represents the graph name in TSPLIB and ’Known op-
timal’ represents the known length of the optimal path for the corresponding

Improved Ant Colony System using Subpath Information for the Taveling... 191

graph. The ’Best’ and ’Average’ of original ACS denote the optimal and aver-
aged lengths calculated by the Dorigo’s algorithm[8]. On the other hand, the
’Best’ and ’Average’ of proposed ACS corresponds to the optimal and averaged
lengths computed by the proposed algorithm. The ’NNChangeRate’ in the last
column represents the changing rate in the next visiting city which is determined
by the proposed algorithm with s3, versus to the original ACS. As shown in the
experimental results, in case of the graphs with small number of cities, the origi-
nal and proposed algorithm can find the optimal solution within the fairly short
period.

Table 1. Experimental results for the graphs with less than 1000 cities

Instance Known Original ACS Proposed ACS NNChange
Optimal Best Average Best Average Rate(%)

att 532 27686 27686 27704.28 27686 27705.88 36.47

d 198 15780 15780 15780.19 15780 15780.1 23.23

lin 318 42029 42029 42086.48 42029 42087.58 19.18

pcb 442 50778 50778 50835.83 50778 50831.57 13.57

rat 783 8806 8806 8819.88 8806 8821.01 24.65

d 1291 50801 50801 50874.87 50801 50863.21 7.20

In case of the graph att532, experimental results obtained by the proposed algo-
rithm indicate that the changing rate of the next visiting city is more than 35%,
compared to the original ACS. This situation can be occurred when the graph
has the more complexity and the large number of edges. Since the generated
subpaths in this complex graph situation are rapidly increased, the possibility
to change the next visiting city becomes higher. On the other hand, in case of
the graph d1291 having more than 1000 cities and simple edge connection among
cities, the NNChangeRate is only 7% because the probability to change the next
visiting city becomes lower for the simple graph situation.

However, in case of the graph with more than 1000 cities and high complexity,
it is quite seldom to find an optimal solution by employing the original ACS.
Table 2 illustrates the experimental results of the graphs with more than 1000
cities. As shown in Table 2, in case of the large graph, the proposed algorithm
finds the solution much closer to the optimal solution than does the original
ACS. The ’Improved Rate’ at the rightmost column represents the improvement
rate of the searching path constructed by the proposed algorithm, compared
to the original ACS. This improvement rate is evaluated by the relation, 100 -
{(c-a)/(b-a) * 100}. Experimental results simulated by the proposed algorithm
indicate that the only 0.5% improvement is obtained for the graph, rl 1889 and
the 72.7% improvement is for the graph, r1 5915. Even if the improvement rate
has a certain level of sensitivity for the specific graph, experimental results for
most of the large graphs show that the proposed algorithm yields more than
30% of improvement. These experimental results suggest that, in dealing with

192 M. Yun, I. Kim

the large and complex graph, the proposed algorithm is much better than the
original ACS in terms of efficiency and performance improvement.

Table 2. Experimental results of the graphs with more than 1000 cities

Instance Known Original ACS Proposed ACS NNChange Improved
Optimal(a) Best(b) Average Best(c) Average Rate(%) Rate(%)

d 1655 62128 62153 62357.89 62147 62352.75 11.0 34.0

fnl 4461 182566 186492 186986.05 186361 187032.61 29.75 3.4

pcb 3038 137694 139098 139749.38 138933 139661.64 26.37 21.8

rl 1889 316536 317349 319232.81 317345 318849.68 20.12 0.5

rl 5915 565530 576654 581050.39 575837 581286.21 21.05 72.7

u 1432 152970 153204 153579.93 153131 153612.97 1.47 31.2

vm 1748 336556 336765 337531.19 336679 337641.23 25.69 41.2

pr 2392 378032 378838 380344.11 378654 380418.47 20.03 32.8

In general, the proposed algorithm shows a good performance for the most
of the graphs. However, as shown in Table 2, the performance is still sensitive
to the characteristics of each graph. Since the original ACS basically adopts
the greedy heuristic algorithm to search for an nearest neighbor, the search
process to find a optimal path could be highly influenced by the distance from
the nearest neighbor. Thus, the performance of the ACS algorithm could be
improved by changing the value of parameters according to the size of graph
or number of edges in the graph. In case of the graph u1432, NNChangeRate
is just 1.47% but the solution obtained by the proposed algorithm is up to
31.2%. This result implies that, in this particular graph, the performance can be
significantly improved by changing few cities in visiting order. In contrast to the
graph u1432, the graph fnl 4461 is another extreme case. In case of the graph
fnl 4461, NNChangeRate is nearly 30% and the improved rate is only 3.4%.
Since a changing rate of the nearest neighbor list is quite high according to the
information on subpath w3, it can be speculated that a graph fnl 4461 could
have the much higher complexity. Therefore, in this type of a complex graph,
any meta-heuristic algorithms may yield the similar trend for the solution of
TSP. The experimental results suggest that the proposed ACS algorithm could
be improved by varying the subpath length, w according to the characteristics
of graphs.

5 Conclusion

In this study, we propose an algorithm which improve the performance of the
original ACS for the TSP. For the construction of tour, the original ACS search
the adjacent cities first, then select a city with the minimum distance as the
next visiting city. However, in order to optimally choose the next visiting city,
the proposed algorithm uses the information on subpath such that the distance

Improved Ant Colony System using Subpath Information for the Taveling... 193

of all possible subpaths with length w are precomputed and select a city having
the much higher probability to construct a optimal path. If the length of subpath,
w is long, there is a possibility for stagnation. Therefore, it is quite crucial to
select the proper subpath length, w. In the ACS, the information on subpath
sw highly influences the initial value of pheromone, τ0. Since the value of τ0

is continuously used in the updating process of local pheromone, it eventually
influences the tour construction process.

In case of the graphs with small number of cities, the original and proposed
algorithm can find the optimal solution within the fairly short period. For the
large TSP, with the same CPU time, the proposed algorithm finds the solution
much closer to the optimal solution than does the original ACS. Even if the
improvement rate has a certain level of sensitivity for the specific graph, exper-
imental results for most of the large graphs show that the proposed algorithm
enhances the improved rate more than 30%. For a certain graph, the solution
performance has been improved up to 72.7% by utilizing the proposed algo-
rithm. The experimental results suggest that the proposed ACS algorithm could
be improved by varying the subpath length, w according to the characteristics
of graphs.

References

1. M. Dorigo, V. Maniezzo and A. Colorni. The Ant System: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part
B, 26(1) : 1-13, 1996.

2. M. Dorigo and L. M. Gambardella. Ant Colonies for the Travelling Salesman Prob-
lem. BioSystems, 43:73-81, 1997.

3. S. Lee and T. Chung. A Study about Additional Reinforcement in Local Updating
and Global Updating for Efficient Path Search in Ant Colony System. Journal of
Korean Information Processing, 10(B):237-242, 2003.

4. M. Dorigo, G. D. Caro and L. M. Gambardella. Ant Algorithms for Discrete Op-
timization. Artificial Life, 5(3):137-172, 1999.

5. O. Gomez and B. Baran. Reasons of ACO’s Success in TSP. Proceedings of 4th In-
ternational Workshop in Ant Colony Optimization and Swarm Intelligence, LNCS
3172: 226-237, 2004.

6. L. M. Gambardella and M. Dorigo. Solving symmetric and asymmetric TSPs by
ant colonies. Proceedings of IEEE International Conference on Evolutionary Com-
putation, IEEE-EC 96: 622-627, 1996.

7. M. Dorigo and T. Stutzle. Ant Colony Optimization. MIT Press, 2003.
8. E. Bonabeau, M. Dorigo and G. Theraulaz. Swarm Intelligence: From Natural to

Artificial Systems. Oxford University Press, 1999.
9. M. Dorigo and L. M. Gambardella. Ant Colony System: A Cooperative Learning

Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary
Computation, 1(1):53-66, 1997.

10. L. Bianchi, J. Knowles and N. Bowler. Local search the probabilistic salesman prob-
lem: correction to the 2-p-opt and 1-shift algorithms. Technical Reports, IDSIA-
18-03, Dalle Molle Institute of Artificial Intelligent, Switzerland, 2003.

11. http://www.aco-metaheuristic.org/aco-code/
12. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/

194 M. Yun, I. Kim

Building Block Filtering Genetic Algorithm

 Jun Lu, Boqin Feng and Bo Li

 Xi'an Jiaotong University

Abstract. A Building Block Filtering Genetic Algorithm(bbf-GA) is proposed
which introduces building block candidates filtering and exploiting to improve
traditional GA. Various recognition functions are designed and tested by ana-
lyzing the features of building blocks during the evolution of GA search for
symmetrical TSP, and one of them is adopted to filter building block candidates.
A position representation for TSP and relevant bbf-based genetic operators are
designed to exploit the building block candidates. The proposed TSP special-
ized position representation can decrease the computational workload of bbf-
GA, such as edge comparison, computation of individual similarity, abstraction
of uniform edge, and operations in bbf-based genetic operators. Experimental
results show that comparing with traditional GA, Building Block Filtering Ge-
netic Algorithm can improve the efficiency of search remarkably by reducing
unnecessary search in GA.

1 Introduction

The GA’s search strategy is commonly described by the pattern theorem and building
block hypothesis. The building block hypothesis (Holland1975; Goldbery 1989) [1]

states that the GA works well when short, low-order, highly-fit schemas recombine to
form even more highly fit higher-order schemas. The ability to produce fitter and
fitter partial solutions by combining building blocks is believed to be the primary
source of the GA’s search power, thus improving the ability of GA to exploit known
building blocks in limited populations and to explore new building blocks at the same
time is essential to improve the search of GA.

Numerous researchers have studied on defining and exploiting building block. For-
est and Mitchell[2] designed a class of fitness landscapes (the “Royal Road” function)
to measure the effects of genetic operators on building block in binary encoding
mechanism. Wu et al. [3] compared two different GA representation schemes with a
floating representation scheme and examine the differences in building block dynam-
ics. Kemenade[4] compared and identified building block by calculating the difference
of the fitness value caused by the change of allele in binary coding, and utilized it in
the proposed three-stage GA.

Zhou peng et al. [5] applied reduction mechanism to find uniform partial solutions
from local optimal solutions generated by heuristic method, then reduced the scale of
the instance by multi-reduction algorithm, finally the solution of the original problem
could be reverted after iterative operations. Schneider et al. [6] proposed an efficient
parallel method to reduce the instance of TSP to a smaller one by finding backbones
which are actual uniform partial solutions from local optimal solutions and eliminat-
ing them from original problem to get even better solutions in a very short time and a
few observables of interest corresponding to this parallel approach.

These research works inspire us to find the way to guide the search of GA by filter-
ing building block from similar parts among populations. In this paper, the search of

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 195-206

instance of symmetrical Traveling Salesman Problem (TSP) is used to evaluate vari-
ous recognition mechanisms, and one of them is adopted and a Building Block Filter-
ing Genetic Algorithm (bbf-GA) is proposed. The structure of this paper is as fol-
lows. In next Section we introduce the chromosome representation for TSP (position
representation) that we proposed, as well as compare and analyse various
recogniztion functions and their filtering results. After that, the bbf-GA is described
detailed in Section 3 and experimental results are presented in Sections 4. Finally,
conclusions come in Section 5.

2 Recognition of Building Block

The Traveling Salesman Problem has been in the focus of studies for many years. In
order to investigate the features of building block during the typical evaluation of a
GA search, several testing instances in TSPLIB[7] are chosen.

As to TSP, Building blocks can be taken as the “best” edges. For a certain node,
the “best” edge is not the shortest edge that takes it as vertex (greedy algorithm can
hardly find the optimal solution), but the edge that synthesized with other “best” edge
to make the shortest full-path. Thus, it is impossible to determine an edge is good or
not just by the comparison of edges’ length. Calculating the difference of the full-path
length when the connected edge of a vertex is changing could identify best edges.
However, the computational work of this is as hard as that of the solution search itself.

In the first place, we use traditional GA to solve TSP. The known optimal solution
is inputted at the beginning of algorithm and all edges in the solution are taken as
“best” edges, which are the building blocks. Then we look into the distribution and
change of building blocks in each individual during running process of algorithm to
find the way to filter building blocks. In order to improve the calculating efficiency,
position representation is designed.

2.1 Position Representation

There have been many different representations used to solve the TSP problem using
GA [8] such as ordinal representation(Grefenstette 1985), adjacency representation
(Grefenstette 1985), metrix representation(Fox and McMahon 1992), edge represen-
tation (Homaifar and Guan 1993), and path representation etc. The most natural rep-
resentation is path representation. For instance, path (1-3-2-6-5-4-1) can be repre-
sented as (1,3,2,6,5,4) directly. However in this representation, the individual has a
cycle topology. The meaning of genic segment just shows the relationship between a
node and its previous and next node, but is independent of its position in chromosome.
Different individual, such as the four shown in the left column of Table 1, may repre-
sent the same path.

In algorithms based on path representation, it takes much time in recognizing the
same edges in two individuals. Thus, we propose a position representation inspired by
adjacency representation (Grefenstette 1985). In position representation, each indi-
vidual is composed of two parts: right adjacency (RA) and left adjacency (LA), which

196 J. Lu, B. Feng, B. Li

means the subsequence node and previous node of the node that represented by genic
position (in adjacency representation individuals only have right adjacency). E.g.
path(1-3-2-6-5-4-1)can be represented as(RA)(3 6 2 1 4 5)and(LA)(4 3 1 5 6 2)
where the 3rd position in(RA)is 2 which means edge (3-2), and the 2nd position
in(LA) is 3 which also means edge (3-2).

The position representation of the four individuals is depicted in the right column
of Table 1. For individuals in position representation, it only needs two operations to
judge whether an edge in them is the same or not. E.g. the following comparison is
used to judge whether edge (4-5) in individual 2 exists in individual 3 or not.
if(individual2.RA[4]==individual3.RA[4] || individual2.RA[4]==individual3.LA[4])

It’s easy to find from Table 1 that six edges of those four individuals are all the
same. Although position representation requires more memory, it reduces the compu-
tational work for the comparison of allele among individuals. What is more, it bene-
fits bbf-based genetic operators depicted in Section 3.

 Table 1. The comparison of path representation and position representation

path representation position representation
 position

individual 1 2 3 4 5 6 1 2 3 4 5 6

3 6 2 1 4 5
1 1 3 2 6 5 4

4 3 1 5 6 2
4 3 1 5 6 2 2 1 4 5 6 2 3
3 6 2 1 4 5
3 6 2 1 4 5 3 2 6 5 4 1 3
4 3 1 5 6 2
4 3 1 5 6 2 4 6 2 3 1 4 5
3 6 2 1 4 5

2.2 Recognition function of building block

Firstly, Simple Genetic Algorithm (SGA) is used to investigate the distribution of
building blocks in the evolution of a GA search for Ludwig’s drilling problem 280.
Unfortunately, the results in early stage are depressed. When the population size is set
to 400, only 30 edges are as same as those in the optimal solution even iterate to the
1000th generation. In order to reduce runtime, new individuals in each generation are
optimized by 2-opt algorithm in probability Ph (that is so-called memetic algorithm).
2-opt algorithm can eliminate path crossover effectively, but cannot guarantee to find
optimal solution [8]. The amount of building blocks among the population in the 20th
generation during the evolution of a search is shown in Fig. 1 (where x-axis is the
serial number of buiding blocks, which are the edges in the optimal solution and y-
axis is the relevant appearing frequency in the population). We can see that some
building blocks have a quite high appearing frequency at the beginning of evolution.
Thus, it is possible to recognize building block by certain statistic methods to avoid

Building Block Filtering Genetic Algorithm 197

useless and repeatable search for known building blocks. In order to find the relation-
ship between the amount of building blocks among individuals and the length of the
path of individuals, we analyze these two features of individuals. The results are
shown in Fig. 2.

Fig. 1. Statistic of appearing frequencies for building blocks

Fig. 2. Distribution of path length / build blocks in individuls

From Fig. 2 we can see that the amounts of building blocks among individuals in
populations are ranged from 180 to 230, and the amount of building blocks and the
path length do not have linear relationship. The individuals that have longer path
length may include more building blocks on the contrary. As to TSP problem, an
individual that has a worse edge achieves a longer path length no matter how many
good edges it has.

Six statistic functions are designed to recognize building block from populations,
in addition the recognizing effects are evaluated.

198 J. Lu, B. Feng, B. Li

Let N be the size of population, if be the fitness of individual (fitness function is
ππ DNLf /5.76)(×= ,where L means the side of the smallest square which can

contain all the cities, N is the number of cities and πD is the length of the path in the

current permutation.), f be the average of fitness, n be the amount of individuals

whose fitness are better than f , iE be the set of edges in individual

i,
{ Eie

Eie
e
iE ∈

∉= 1
0 ,then six recognition functions are designed as follows:

N/
1

1 ∑
=

=
N

i

e
ie EF (1)

n/2 ∑=
n

i

e
ie EF (2)

)(*3

∑
∑= N

i

N

i

e
ie

fi

fiEF (3)

)(*4

∑
∑= n

i

n

i

e
ie

fi

fiEF (4)

]05.0,01.0[)1(* 15 ∈−= −∑ cccEF i
n

i

e
ie

 (5)

N][2,bb/6 ∈= ∑
b

i

e
ie EF (6)

2.3 Analysis of recognition functions

Probabilities are calculated by recognition functions for all edges in population in the
generations during the evolution. Those edges whose probability exceed threshold
Pthreshold are considered as building block candidates, and let TC represents the amount
of them. Compare building block candidates and building blocks (edges in known
optimal solution) to find false building blocks (that are candidates who are not true
building blocks), and let FC represents the amount of these false building blocks.
Then, the true recognition rate is: Rate=(Tc-Fc)/Tc.

When Pthreshold is set to 0.98,the comparison of the recognition results of function F1
to F5 is shown in Fig. 3.

Building Block Filtering Genetic Algorithm 199

Fig. 3. The comparison of different functions (Pthreshold =0.98)

By analyzing a great deal of experimental data, we found that the recognition abil-
ity of function F4 is the best, while F5 is the worst whose false rate is the highest. The
false rate of F3 is the sub-highest, while the rest are similar. The comparison of rec-
ognition results with different thresholds of function F4 is shown in Fig. 4.

Fig. 4. Comparison of different thresholds for F4 (Pthreshold is ranged from 0.80 to 0.99)

From Fig. 4 we can see that when the threshold is close to 1, it is hardly to find
building block candidates, and when the threshold is lower than 0.96, the false rate is
rather high.

The recognition results of function F6 are shown in Fig. 5. When b, which means
the number of the best individuals in population, is set from 21 to 27, and the thresh-
old is 1. From Fig. 5 we can see that the smaller the number of statistic individuals is,
the higher the false rate is. When b is set to 8 and at the 190th generation, although the
true rate is 0.95, due to the larger number of building block candidates, the false
building blocks are over 20. From the comparison of all mechanisms, we find that
function F4(Pthreshold =0.98) and F6(Pthreshold =1 , b= 27) , the comparison of which is

200 J. Lu, B. Feng, B. Li

shown in Fig. 6, are better than others. As a result, we take F6 (Pthreshold =1 , b= 27) as
filtering function for that it needs less computational work.

Fig. 5. Comparison of F6 (Pthreshold =1) when b is set from 21 to 27

Fig. 6. Comparison of F4 (Pthreshold =0.98) and F6(Pthreshold =1, b=27)

The comparison of different functions show that statistic based method can recog-
nize building block in a high probability. But false recognition will appear no matter
which function is used. In this case, eliminating the edges of building block candi-
dates from original problem by reduction mechanism to reduce the scale of the prob-
lem will probably cause false reduction, which will result to failure to find the opti-
mal solution.

However, the average probability of finding building blocks by the best functions
is 0.98. These building block candidates can be preserved during the evolution and
make the search of GA more effective.

Building Block Filtering Genetic Algorithm 201

3 Building Block Filtering Genetic Algorithm (bbf-GA)

3.1 The bbf-GA

In order to exploit the building blocks filtered, we propose bbf-GA as following:
Initial the parameters of GA;
Create initial population P(t) randomly;
Improve chromosomes by 2-opt algorithm in probability Ph;
Evaluate P(t);
While (not meeting the terminal condition){
 Calculate and abstract building block candidates from individuals of P(t);

Implement crossover operation to P(t) in probability of Pc*(1-Pb) to get
C1(t);

Implement bbf-based crossover operation to P(t) in probability of Pc*Pb to
get C2(t);

Reproduce P(t) in probability of (1-Pc) to get C3(t);
C(t) =C1(t)+C2(t)+C3(t);
Implement mutation operation to C(t) in probability of Pm*(1-Pb);
Implement bbf-based mutation operation to C(t) in probability of Pm*Pb;

 Implement 2-opt algorithm to C(t) in probability of Ph;
 Evaluate C(t);
 Generate P(t+1) based on the optimum individuals in P(t) and C(t);
 t=t+1;
}

In our algorithm the position representation is adopted, and each individual is rep-
resented as right adjacency (RA) and left adjacency (LA). Crossover operator adopts
Ordered Crossover Operator[8] method proposed by Davis in 1985, which constructs
an offspring by choosing a sub tour of one parent and preserving the relative order of
cities of the other parent. Mutation operator adopts random multipoint mutation. The
parameters of GA are: Pc(crossover probability), Pm(mutation probability), Ph(2-opt
optimization probability) , N(the size of population).

In order to filter building block candidates, the recognition function is implemented
to algorithm. Building block candidates are also represented as right adjacency (RA)
and left adjacency (LA), where the position of non-building block is represented as -1.
In addition, bbf-based crossover operator and mutation operator is designed to exploit
building block candidates. The bbf-based genetic operators are used in probability of
Pb, while normal operators are used in 1-Pb. From later experiments we can see that
the search will cause rapid premature convergence when Pb is big enough. Due to the
existence of false genic segment in building block candidates, Pb shouldn’t be too big.
When Pb is set to 0, algorithm is equal to traditional GA actually.

202 J. Lu, B. Feng, B. Li

3.2 Bbf-based genetic operators

In this paper, traditional genetic operators are mended to exploit building block can-
didates in individuals. The bbf-based crossover operator is depicted as following.

Input: parents P1,P2; building block candidates B
output: offspring O1
operation: choosing edges in parent P2 that either are between random position s1
to s2 or belong to building block candidates and the rest edges from parent P1 to
generate offspring O1. The loss edges are generated randomly.

Algorithm description:

(1) iCount=0; // count of passed node
(2) O1[]=φ // path of offspring
(3) Set edges in P2 that neither are between position s1 to s2 nor belong to building

block candidates to -1;
(4) iCur=rand(N); // begin with random node
(5) while(iCount <N){ // analyze for each gene
(6) if(P2.RA[iCur]!=-1){ / /P2 has right adjacency
(7) iNext= P2.RA[iCur];
(8) P2.RA[iCur]=-1; // segment can be used only once
(9) P2.LA[iNext]=-1;
(10) }
(11) else if(P2.LA [iCur]!=-1){ //P2 has left adjacency
(12) iNext= P2.LA[iCur];
(13) P2.LA[iCur]=-1; //segment can be used only once
(14) P2.RA[iNext]=-1;
(15) }
(16) else{ // edges that not belong to P2 are selected from P1
(17) iNext= P1.RA[iCur]; // select RA first
(18) if(iNext∈O1[] || (P2.RA [iNext]!=-1 && P2.LA[iNext]!=-1)){
(19) // next node has been used, or is the vertex of two edges in P2
(20) iNext= P1.LA[iCur]; // select LA then
(21) if(iNext∈O1[] || (P2.RA[iNext]!=-1 && P2.LA[iNext]!=-1))
(22) // next node has been used, or is the vertex of two edges in P2
(23) iNext=random usable node
(24) }
(25) }
(26) O1[]+=iNext;
(27) iCur=iNext;
(28) }

The purpose of step 3 in above algorithm is to eliminate neither selected edges nor
building block candidates in parent P2 to generate offspring O1 cooperated with
parent P1. The starting node is generated randomly, and next node is selected from P1
or P2 each time. To generate next node, the RA and LA (which means two edges
representing different direction from current node) of parent P2 are selected firstly. If
no usable node found, the RA and LA of parent P1 is used instead. If no valid node is

Building Block Filtering Genetic Algorithm 203

found in both P1 and P2, next node is generated randomly (in step 23). In this case, it
is necessary to estimate whether next node is used (which may cause cycle), or is the
vertex of two edges in P2 (which may cause the loss of an edge in P2).

The algorithm preserves all edges that either in selected zone or belong to building
block candidates in parent P2, as well as some edges of parent P1. From the process
of algorithm we can see the advantage of position representation, that is, preserving
certain edges (non-continuous edges are possible) effectively without much computa-
tional work.

The way to mend mutation operator is simple. After generating a node that should
be mutated randomly, the RA and LA of this node are checked whether they are be-
longing to building block candidates. If so, generate a new node to avoid losing of
these edges.

The bbf-based operators can preserve edges that belong to building block candi-
dates in parents and avoid damage, reform and comparison to these nodes. Thus, the
search is focus on the rest edges, which reduce unnecessary stochastic search and
improve search efficiency of GA.

4 Experiment and Analysis

In our experiments, we set parameter values as followings: population size N=400,
number of generations=400, crossover probability Pc=0.80, mutation probability
Pm=0.03, local optimization (2-opt algorithm) probability ph=0.3. Traditional GA
and bbf-GA (Pb=0.35, and bbf-based genetic operators are employed after 100th gen-
eration) are implemented 100 times each and the results are shown in Table 2.

Table 2. Comparison of Traditional GA and bbf- GA

From Table 2 we can see that the possibility of finding the optimal solution

(2586.7696) by bbf-GA is increased remarkably, and the fluctuating of result is re-
duced. Another important data in our experiment is that a suboptimal solution
(2587.8088) is found 48 times. We consider this as a result of that the false building
block candidates cause convergence to suboptimal in high probability. The results
also show that traditional GA has higher fluctuating and randomicity than bbf-GA.
Fig. 7 is the distribution of building block candidates in one of these results (the red
edges represent building block candidates filtered).

Algorithm
Times of finding
optimal solution

Average generations of
finding optimal solution

variance of solu-
tion

Traditional
GA 4 309 69.14505583

bbf-GA 28 213 29.08194754

204 J. Lu, B. Feng, B. Li

The bbf-GA cannot be improved by increasing Pb simply. When Pb is up to 0.85,

the result is no better than traditional GA. By analyzing the recognizing process of
building block candidates we can see that when Pb is big enough, building block
candidates (including both true and false candidates) diffuse among population. It is
clear to see from Fig. 8 that the amount of building block candidates and false candi-
dates are increased significantly as well as recognition accuracy is reduced from the
100th generation when bbf-based genetic operators are employed.

Fig. 8. Comparison of candidate building block recognition in evaluation process (Pb=0.85)

Fig. 9. Diversity comparison in evoluation process

Fig. 7. Distribution of building block candidates

Building Block Filtering Genetic Algorithm 205

By observing the individuals among population, we find that when Pb is big
enough, the diversity of population will be destroyed, which leads to premature con-
vergence. Fig. 9 shows the comparison of the average information entropy of differ-
ent generations, where when Pb=0 (traditional GA), the diversity is the highest; when
Pb=0.35, the diversity is decreasing slightly; When Pb=0.85, the diversity is de-
creased significantly from the 100th generation.

5 Conclusion

In order to reduce useless search of GA on parts that are already optimal and make
the search more effective, a mechanism that uses statistic function to filter building
block candidates in the evolution of GA search is proposed. By testing the recogni-
tion effect of 6 statistic functions, a bbf-GA is proposed, including the filtering of
building blocks and the bbf-based genetic operators. The experimental results show
that the recognition and utilization of building blocks can improve the efficiency of
search significantly. The comparison between traditional GA and bbf-GA makes it
clearly that local searching algorithm(2-opt) can generate a large amount of high
quality partial solutions rapidly, as well as recognizing and preserving these partial
solutions during the evolution of GA can take advantage of the parallel search ability
of GA. In addition, position representation is proposed, which decreases the computa-
tional workload of bbf-GA, such as edge comparison, computation of individual
similarity, abstraction of uniform edge, and operations in bbf-based genetic operators
(especially for the exploitation of non-continuous edges).

References

1. J. H. Holland. Adaptation in Natural and Artificial System. Ann Arbor: The University of
Michigan Press, 1975.

2. S. Forrest, M. Mitchell. Relative building-block fitness and the building-block hypothesis. In
Foundations of Genetic Algorithms 2, 1992, pp.109-126.

3. Annie S. Wu and Kenneth A. De Jong An examination of building block dynamics in dif-
ferent representations. In the Proceedings of the 1999 Congress on Evolutionary Computa-
tion, 1999 pp. 715-721.

4. Cees H. M. van Kemenade. Building block filtering and mixing. Report SEN //Centrum voor
Wiskunde en Informatica, Software Engineering, 1998.

5. Zhou Peng, Zhou Zhi, Chen Guoliang et al. A multilevel Reduction Algorithm to TSP. Jour-
nal of Software.2003,14(1):35-42.

6. J.Schneider, et al, Searching for backbones-an efficient parallel algorithm for the traveling
salesman problem, Computer Physics Communications 96, 1996, pp.173-188.

7. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
8. P.Larranaga, C.M.H.Kuijpers, et al. Genetic algorithms for the travelling salesman problem:

A review of representations and operators. Artificial Intelligence Review, 13(2), 1999, pp.
129-170.

206 J. Lu, B. Feng, B. Li

Evolutionary Training of SVM for Classification
Problems with Self-Adaptive Parameters

Ángel Kuri-Morales1, Iván Mejía-Guevara2

1 Departamento de Computación, Instituto Tecnológico Autónomo de México,
Río Hondo No. 1,

01000 D. F., México
akuri@itam.mx

2 Posgrado en Ciencia e Ingeniería de la Computación, Universidad Nacional Autónoma de
México, IIMAS, Ciudad Universitaria,

04510 D. F., México
imejia@uxmcc2.iimas.unam.mx

Abstract. In this paper we describe a methodology to train Support Vector Ma-
chines (SVM) where the regularization parameter (C) is determined automati-
cally via an efficient Genetic Algorithm (Vasconcelos� GA or VGA) in order to
solve classification problems. We call the kind of SVMs where C is determined
automatically from the application of a GA a �Genetic SVM� or GSVM. In or-
der to test the performance of our GSVM, we solved a representative set of
problems. In all of these the algorithm displayed a very good performance. The
relevance of the problem, the algorithm, the experiments and the results ob-
tained are discussed.

1 Introduction

Support Vector Machines have recently received increasing attention from the scien-
tific community due to their underlying mathematical foundation. As opposed to more
informal (and traditional) alternatives to neural network development, SVMs rely on
well understood mathematical properties which, in effect, allow us to theoretically
prove that, for example, perceptron networks (PN) or radial basis function (RBF)
ensembles are all encompassed by them. Architectural issues such as the number of
hidden layers and the number of neurons in such layers are dispensed with. A number
of parameters the user has to heuristically estimate (such as the learning rate in PNs or
the number of centers in RBFs) are not present. One key issue in this kind of net-
works, however, has to do with the so-called �regularization parameter� which, in
effect, determines the accuracy of the SVM in terms of possible misclassification of
sample elements unknown during the training phase. �C�, as of today, has been tradi-
tionally determined on a case basis and, although some prior efforts to automate its
value do exist [1] there has not been a reliable report of it systematic case-independent
automated calculation. In this paper we propose the use of evolutionary computation
techniques which help us solve the problem of C�s determination; particularly, we
focus on classification problems. In Section 2 we discuss some theoretical issues re-

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 207-216

garding SVMs, specifically emphasizing the importance of regularization parameter
C. In section 3 we discuss how the methodology of VGA can be used to train this kind
of NN and show how to determine automatically the regularization parameter from its
application to the dual problem. We also argue that this methodology is appropriate to
solve constrained optimization problems, such as these. In section 4 we present four
problems we analyzed to show how the GSVM may solve Classification Problems and
the resulting level of accuracy. Three of these data sets were obtained from the Uni-
versity of California at Irvine Machine Learning Repository (UCI-MLR); a fourth was
derived theoretically. In section 5 we discuss the experiments and results. Finally, in
Section 6 we offer our conclusions and point to future lines of research.

2 Support Vector Machines

SVM is a supervised neural network that has been used successfully for classification
and nonlinear regression problems [2][3][4]. In what follows we use the notation �xi�
and �w� to denote the independent variable vectors and the weight vectors respec-
tively. A training sample (){ } N

1iii ,dx ==τ (where ix is the input pattern for the ith ex-
ample and id is the target output) represents two classes in the case of pattern classifi-
cation and a set of N independent variables with N dependent variable ()id in the case
of nonlinear regression.

When attempting pattern classification, the objective is to find a surface that allows
the separation of the objects in the sample in two classes: the first class should be on
one side of the surface ()1=id and the second class on the other side ()1−=id . The
distance between the nearest points of both classes is called the margin of separation
and the optimal surface is found when that margin is maximized.

Fig. 1. Transformation from input space to higher-dimensional feature space.

The form of the surface depends of the linear separability characteristics of τ , i. e.,
when τ is �linearly separable� the optimal surface corresponds to a hyperplane that is

Margin

Support

Vectors

Input space Feature Space

Ф(.)

Margin

Support

Vectors

Input space Feature Space

Ф(.)

Kuri A., Mejía I.208

called �Optimal Hyperplane� (OHP) and when τ is �nonlinearly separable�, the opti-
mal surface is not a hyperplane in the input space. The introduction of kernel functions
is made in order to deal with non-linear decision surfaces. This implies mapping the
data to a higher dimensional feature space which allows the construction of an OHP in
this space that adequately separates the two classes. In Figure 1, the class 1 (squares)
and the class 2 (stars) are non-linearly separable in the input space. In the feature
space, however, both classes are separated from each other with a hyperplane.

The kernel functions are used to map vectors in the input space into vectors in the
feature space. These functions must satisfy certain known conditions to be admissible
as kernels in a SVM. Specifically they must satisfy Mercer´s condition [5][6]. Many
functions may be used as kernels [7], but the most popular are: a) Polynomial learning
machines (PLM), b) Radial-basis function networks (RBF) and c) Two-layer percep-
tron networks (LP) [8]. Since the theory allows for any of the above, we used PLM
and RBF kernels due to their proven simplicity.

2.1 Primal and dual forms

As mentioned above, we want to find the OHP which maximizes the margin of separa-
tion between the two classes that constitute the training set. This gives rise to a con-
strained optimization problem which has to be solved to get the OHP. The form of the
problem depends on linearly separable characteristics of the training set. The Quad-
ratic Programming (QP) problem for linearly separable patterns is formulated as fol-
lows:

() Nibxwd

wwMin

i
T

i

T

bw

,...,2 1,for 1

:subject to
2
1

,

=≥+

=Φ

(1)

The solution of this problem requires the search of w and b that minimize an objec-
tive convex function subject to a set of linear constrains. In the case of nonlinear pat-
terns, a set of slack variables is introduced { } N

1ii =ξ in order to control the level of mis-
classification for some elements of τ [9]. In this case the QP problem is:

() Nibxwd

CwwMin

ii
T

i

N

i
i

T
bw

,...,2 1,for 1

:subject to

2
1

1
,,

=−≥+

+=Φ ∑
=

ξ

ξ
ξ

(2)

Equations (1) and (2) correspond to primal problems for classification of linearly
and nonlinearly separable classes, respectively. However, it is possible to define the
dual problem. The optimal value for both problems is the same [10]. In both prob-
lems, (1) and (2), the solution of the dual form corresponds with the Lagrange Multi-
pliers (LMs) of the QP problem and the LMs different from zero correspond to the
support vectors [11]. The dual form for nonlinearly separable patterns is:

Evolutionary Training of SVM for Classification Problems... 209

() ()

Ni

d

xxKddMax

i

N

i
ii

N

i

N

jijiji

N

i
i

,...,2 1,for C0

0

:subject to

,
2
1Q

1

1 1j1

=≤≤

=

−=

∑

∑∑∑

=

= ==

α

α

αααα

(3)

The dual form for separable patterns is essentially the same, except for
N,...,1i,i =α which are not bounded; here, C is the upper bound on α i. It is impor-

tant to note that a kernel is included in the dual form (K(ּ,ּ)), a fact which permits us
to construct a decision surface that is nonlinear in the input space but whose image in
the feature space is linear.

Regularization Parameter. The upper bound C for the LMs in a nonlinearly separa-
ble QP problem is known as �Regularization Parameter� [12]. This parameter controls
the trade-off between the complexity of the machine and the level of misclassification
allowed. When C is low, a higher proportion of errors is allowed in the solution, while
few errors are permissible for high C values.

Automatic determination of C via GA. �C� is traditionally selected by the user. It
may be estimated experimentally or analytically [13]. The analytical option relies on
the calculation of Vapnik-Chervonenkis (VC) dimension for the problem at hand. VC
dimension is, however, extremely difficult to calculate in practice and, in effect, disal-
lows the analytical approach. Therefore, the main goal of this paper is to propose a
method to estimate automatically the optimal value of this parameter using a GA with-
out the practical limitations mentioned above. In our approach C�s value is in the
genome and induces a new constraint. This possibility is exclusive of the evolutionary
approach (and perhaps a few other meta-heuristics) and explains our choice.

3 Genetic Algorithms

GAs are nowadays commonly used to solve complex optimization problems [14]. It is
natural to tackle the problem of finding a good value of �C� with one. In what follows
we briefly discuss the methodology.

3.1 Training a SVM using GAs

Several commercial optimization libraries can be used to solve the quadratic pro-
gramming problem. However, these libraries are of limited used. The memory re-
quirements of the QP problem grow with the square of the size of the training sample
[15]. For that reason, in real-life applications, the QP problem cannot be solved by
straight forward use of a commercial optimization library. Some optimization tech-

Kuri A., Mejía I.210

niques can be directly applied to QP problems. However, many of them require that
the kernel matrix is stored in memory, implying that the space complexity is quadratic
in the sample size. For large size problems, these approaches can be inefficient, and
should therefore be used in conjunction with other techniques [16]. In this paper, we
use GAs to tackle the QP problem.

GAs as optimization tool. The application of GAs to SVMs differs substantially from
previous approaches to train NNs because the dual QP problem presented above is
used to find the support vectors directly. In previous experiences the support vectors
have been determined from the application of Lagrange Multipliers which neatly ad-
just to this problem (which satisfies Karush-Kuhn-Tucker conditions) but which are
not applicable to search for �C� [13]. In fact, GAs are used here to solve the con-
strained QP. One advantage of using GAs for this kind of problems is that restrictions
are not imposed in the form of the objective function: neither the objective function
nor the constrains of the problem must be derivable in order to solve de problem prop-
erly.

3.2 Relative optimality of VGA

Although GAs were originally designed to solve unconstrained optimization problems,
they can be adapted to tackle the constrained cases [17] as will be shown.
 The first step is the selection of the population�s size. In this work we considered a
population of size P = 100 for all of the problems; the initial population was randomly
generated; weighted binary fixed point representation was used. Each individual
represents a LM (αi, i=1,...,N), where N is the number of points in the training set for
the dual SVM problem. Every variable is to be expressed in fixed point format with
one sign bit (0→+; 1→-), 8 integer bit and 20 decimal bits as shown in figure 2.

Fig. 2. Fixed point representation

With this representation: �28+2-20 ≤ αi ≤ +28-2-20. The genome�s size is (N+1)x29,
where N is the number of training data (N) and the (N+1)th point corresponds to the
value of C. Once the initial population is generated, VGA [18] is used with Pm=0.05
(probability of mutation) and Pc=0.9 (probability of crossover). The evaluation func-
tion is constructed following the methodology of SVMs but we modify it by trans-
forming the constrained original problem to a non-constrained one. To do this, we
have chosen the penalty function (F(x)) [19]:

() ()

≠−

∑
=

−
=

se otherwi

t sxf
s

i t
ZZ

xF
0

1

(4)

Sign Int Dec
1 bit 8 bits 20 bit

αi

Evolutionary Training of SVM for Classification Problems... 211

where Z is a large constant [O(109)], t is the number of constraints, s is the number of
these which have been satisfied and f(x) corresponds to the fitness at point x. The GA
operation was terminated after 250 generations.

4 Training SVMs for classification problems

We have applied the methodology to the problem of determining whether an object
from a sample belongs to one of two groups. This may be easily extended to N groups
[20]. SVMs have traditionally been designed to deal with binary classification, but a
lot of real world problems have more than two classes. In this paper we deal with
both, binary and multi-class problems. In the case of multiple class problems, one-
versus-one classifier and one-versus-all classifier [21] were used. In one-versus-one
classifier, a SVM model is built for each pair of classes. This results in p(p-1)/2 (p is
the number of classes in a specific problem) SVM classifiers. In one-versus-all classi-
fier, p classifiers are used. The ratio between the number of classifiers in one-versus-
one classifier and one-versus-all classifier is (p-1)/2, which is significant when p is
large. On the other hand, all N observations are used in each classifier in one-versus-
all classifier.

4.1 Problems

A set of classification problems is presented here in order to illustrate the classifica-
tion efficiency of the method. The set of problems are:

Lung Cancer Database. The data for this problem describes 3 types of lung cancers.
The Authors give no information on the individual variables nor on where the data
was originally used1. A total of 32 instances are considered in the original data. Since
it has 5 missing attributes only 27 were considered. The data have 56 predictive nomi-
nal (values 0-3) attributes. Three classes are considered in this problem with: 9 obser-
vations for class 1, 13 for class 2 and 10 for class 3. It is important to mention that the
problem has few instances (27) and a lot of attributes (55). For this reason we decided
to use natural splines [22] to interpolate and enrich the data. The new (interpolated)
data set consisted of 100 objects: 85 were used for training and 15 for testing.

Wine Recognition Database. These data are the result of a chemical analysis of
wines grown in the same region in Italy but derived from three different cultures2. It
corresponds to three types of wines with a total of 178 instances: 59 for wine class 1,
71 for class 2 and 48 for class 3. A total of 13 continuous attributes for each object
was considered.

1 UCI-MLR [http://www.ics.uci.edu/~mlearn/MLRepository.html]
2 Idem

Kuri A., Mejía I.212

Iris Plant Database. This is perhaps the best known database to be found in the pat-
tern recognition literature. The data set contains 3 classes of 50 instances each, where
each class refers to a type of iris plant3. One class is linearly separable from the other
two, the latter are not linearly separable from each other. Four attributes are in this
database: sepal length, sepal width, petal length and petal width (all of these measured
in cm).

Functions. Two classes are defined in this problem with the help of algebraic and
trigonometric functions. A total of 88 points with 5 attributes was defined for each
class, where these values were randomly generated. The range for each point was
π][0, . The functions sin(.), cos(.), tan(.), ln(.) and sqrt(.) were applied to attributes 1,

2, 3, 4 and 5, respectively, for each instance in the case of class 1. Likewise, the func-
tions senh(.), cosh(.), tanh(.), exp(.) and sqr(.) were applied to each object of class 2.
Classes 1 and 2 were defined as the sum of their respective functions and the outputs
for class 1 and 2 were set to 1 and �1, respectively. The number of objects in the sam-
ple was 176: 150 for training and 26 for testing. We believe the contribution of these
functions is to prove the accuracy of this method in functions that have not any par-
ticular pattern, since the values for the selected attributes were randomly generated.

5 Experiments and Results

In the column �problem� of Tables 1, 2, 3 and 4 the codes i_j correspond to the results
of one-versus-one classifier for i=1,2 and j=2, 3 (i=1 and j=2 in the case of Table 4).
In the case of one-versus-all classifier, i=1,2,3 and j=A (�All�). For instance, 1_2
means �class 1 vs. class 2�; 3_A means �class 3 vs. all�, etc.

5.1 Lung Cancer

Because 3 classes are considered in this problem, one-versus-one classifier is used in
order to test the methodology proposed here. The result of the application of this clas-
sifier is shown in Table 1. Results were: 91.2% of average accuracy for training data
and 88.9% for test data where splines were applied and 92.3% of average accuracy
when the natural spline interpolation was not applied.

5.2 Wine Recognition

One-versus-one and one-versus-all classifiers were used in this problem. As men-
tioned above, 3 classes are considered in this problem. Hence, this results in 3 SVM
classifiers for each alternative. The comparison between them is shown in Table 2.
The accuracy of both classifiers is good, but the one-versus-one classifier has a better
accuracy with an average of 93.6% for training data and 94.3% for test data. For one-

3 Idem

Evolutionary Training of SVM for Classification Problems... 213

versus-all classifier the average accuracy for training data is 80.2% and 84.6% for test
data.

Table 1. Results for Lung Cancer Classification Problem

Table 2. Results for Wine Recognition Problem

5.3 Iris Plant

One-versus-one and one-versus-all classifiers were used for this recognition problem.
The results for this classification problem are shown in Table 3. Because one of the
classes is linearly separable, one-versus-one classifier offers a better accuracy than
one-versus-all classifier. The reason is that the linearly separable class (iris setosa)
shows a 100% accuracy when compared with each of the other classes. The average
accuracy for training set was 96.1% and for testing set was 93.3% in the case of one-
versus-one. In the case of one-versus-all, 90.9% for both training sample and testing
sample.

5.4 Functions

This is a binary classification problem. The results are shown in Table 4. The accu-
racy for training set was 97.7% and 100% for testing set.

Kuri A., Mejía I.214

Table 3. Results of GSVM for Iris Plant Classification Problem.

Table 4. Results for the Functions problem.

6 Conclusions

A GSVM classifier is presented in this paper. The application of this algorithm to a set
of test problems resulted in a very good performance. The application of a VGA al-
lows us to tackle an extremely complex constrained optimization problem (if judged
from the traditional point of view) in a very simple and straightforward way. Consider
that every one of the data vectors determines a constraint. For example, in a typical
problem the number of constraints is larger than 150. VGA has to determine the band
of feasible values out of a potentially infinite set. However, the most important issue is
that the value of the regularization parameter was quasi-optimally found trough the
algorithm rather than by hand. The reported work seems to indicate that VGA (along
with proper constraint handling) is an efficient way to optimize C by including it in the
genome. In the past, the difficulty of properly determining the value of C was usually
interpreted, simply put, as changing one typical problem in NNs (the determination of
the most adequate architecture) into another, perhaps more difficult, one (the best
determination of the regularization parameter). If C�s determination may be automated
as we have shown, then the theoretical advantages of SVMs may be fully exploited
and the negative criticism mentioned above may be eliminated.

Acknowledgement

We want to thank UCI-MLR for the use of Lung Cancer Database, Wine Recognition
Database and Iris Plant Database.

Total Train Test
1_2 150 128 22 224.000 0.001 97.7% 100.0% RBF 2

Training
Accuracy

Test
Accuracy KernelProblem

Sample
C Rest 0

Evolutionary Training of SVM for Classification Problems... 215

References

1. Jordaan, E. M. & Smits, G. F.: Estimation of the regularization parameter for support vector
regression. Proc. of World Conference on Computational Intelligence I. Honolulu, Hawaii.
(2002) 2785-2791.

2. Schmitdt, M., Grish, H.: Speaker identification via support vector classifiers. Proc. of Inter-
national Conference on Acoustics, Speech and Signal Processing, (1996) 105-108.

3. Drucker, H., Wu, D., Vapnik, V.: Support vector machine for spam categorization. Trans.
 on Neural Networks, Vol. 10. IEEE, (1999) 1048-1054.
4. Vapnik, V., Golowich, S., Smola A.: Support vector method for function approximation,
 regression, estimation and signal processing.Adv.Neural Inform.Process.Syst., Vol.9. (1996)
 281-287
5. Haykin, S.: Neural Networks. A comprehensive foundation. 2nd ed. Prentice Hall, New
 Jersey (1999)
6. Mercer, J.: Functions of positive and negative type, and their connection with the theory of
 integral equations. Transactions of the London Philosophical Society (A), Vol.209.(1909)
 415-446.
7. Shawe-Taylor, J., Cristianini, N,: Kernel Methods for Pattern Analysis. Cambridge Univer-
 sity Press, UK (2004).
8. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and other
 kernel-based learning methods. Cambridge University Press, UK (2000).
9. Burges, C. J. C.: A tutorial on support vector machines for pattern recognition. Data Mining
 and Knowledge Discovery 2, Vol. 2. (1998) 121-167.
10. Cristianini, N., Shawe-Taylor, J., op. cit. pp. 79-92.
11. Cristianini, N., Shawe-Taylor, J., op. cit. pp. 93-124.
12. Haykin, S., op. cit., pp. 318-350.
13. Haykin, S., op. cit., pp. 326-329.
14. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge, Massachu-
 setts (1996).
15. Burges, C. J. C.: op. cit. 121-167.
16. Cristianini, N., op. cit., pp. 93-124.
17. Kuri, A., Gutiérrez, J.: Penalty Functions Methods for Constrained Optimisation with Ge-
 netic Algorithms.A Statistical Analysis.Lecture Notes in Artificial Intelligence, Vol.2313.
 Springer-Verlag, (2002) 108-117.
18. Kuri, A., Mejía, I.: Determination of the Regularization Parameter for Support Vector
 Machines via Vasconcelos� Genetic Algorithm. Transactions on Circuits and Systems,
 Issue 4, Vol. 4, WSEAS, (2005) 281-286.
19. Kuri, A., Gutiérrez, J., op. cit., pp.109-111.
20. Fung, G., Mangasarian, O. L.: Multicategory proximal support vector machine classifiers.
 Data Mining Institute Technical Report, (2001) 01-06.
21. Allwein, E. L., Shapire, R. E., Singer, Y.: Reducing multiclass to binary: A unifying ap-
 proach for margin classifiers.Journal of Machine Learning Research, Vol.1, (2000) 113-141.
22. Bojanov, B., Hakopian, H., Sahakian, B.: Spline Functions and Multivariate Interpolations.
 Springer-Verlag, (1993).

Kuri A., Mejía I.216

Natural Language Processing

Language Portable Detection for Spanish
Named Entities

Zornitsa Kozareva, Oscar Ferrández, Andrés Montoyo and Rafael Muñoz

Departamento de Lenguajes y Sistemas Informáticos
Universidad de Alicante, Spain

{zkozareva,ofe,montoyo,rafael}@dlsi.ua.es

Abstract. We propose a language portable Named Entity detection
module developed and tested over Spanish and Portuguese. The influ-
ence of different feature sets over the classification task was studied and
demonstrated. The differences in language models learned by three data-
driven systems performing the same NLP tasks were examined. They
were combined in order to yield a higher accuracy than the best indi-
vidual system. Three NE classifiers (Hidden Markov Models, Maximum
Entropy and Memory-based learner) are trained on the same corpus data
and after comparison their outputs are combined using voting strategy.
Results are encouraging since 92.96% f-score for Spanish and 78.86%
f-score for Portuguese language portable detection were achieved. For
Spanish the classification which is based on the language portable detec-
tion reached 78.59% f-score. Compared with the systems competing in
CoNLL-2002 our system reaches third place.

1 Introduction

The increasing flow of digital information requires the extraction, filtering and
classification of pertinent information from large volumes of texts. Information
Extraction, Information Retrieval and Question Answering systems need Named
Entity (NE) recognition and classification modules. For English the available
resources and the developed systems outnumber, but in the case of languages as
Spanish, Portuguese or eastern European ones where the resources as gazetteers1,
annotated corpora etc. are not sufficient but the need is still the same, the
situation looks different. This fact motivated us to start the development of a
language resource independent system during its NE detection and using less
resources while classifying into LOC, PER or ORG classes.

In this paper we present a NE system developed for Spanish. Three machine
learning algorithms were used in concrete: Hidden Markov Model, Maximum
Entropy and the Memory-based learner. They were applied to the CoNLL-2002
shared task for Spanish. The language portable detection was also tested with
Portuguese language. Both languages come from the Romance language group
and have similar behavior so features valid for Spanish were directly adopted by
Portuguese.
1 catalogues of names of people, locations, organizations etc.

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 219-228

In order to improve overall performance feature selection and systems’ com-
bination were done. Aiming at minimal feature space, less processing time and
gaining results while restraining from gazetteers, the obtained results are quite
encouraging. For Spanish we reached 92.96% f-score for language portable de-
tection and 78.59% f-score for classification. Portuguese was used to support our
hypothesis for language portable detection and we gained 78.86%. A study of
the occurred errors and proposals for resolving them was made, comparison with
existing systems and future work are discussed. The paper is organized as follow-
ing: in Section 2 we expose the features on which the classification methods are
based and a brief description of the classifiers, the voting strategy and the data
with which we worked is in Section 3, discussion of the obtained results and error
correction during NE detection is demonstrated in Section 4, classification into
classes is represented in Section 5, a comparison with CoNLL-2002 systems is
exposed in Section 6, we conclude and mention about the future work in Section
7.

2 Feature description and Classification methods

For NE detection and classification task, the Memory-based learning and Max-
imum Entropy classifiers utilize the features described below, HMM takes only
the three most informative attributes.

2.1 Features for NE detection

We use the well-known BIO model for NE detection, where a tag shows that a
word is at the beginning of a NE (B), inside a NE (I) or outside a NE (O). For the
sentence: Paulo Suarez es mi amigo. , the following tags have been associated,
“B I O O O O ”, where Paulo starts a named entity; Suarez continues this entity;
while the words es, mi, amigo and the full stop are not part of a NE.

The original set for BIO is composed of 29 features as described in Figure
1 and we denote this set by A. For improving classifier’s performance different
feature combinations of the original set were constructed. The features represent
words, position in a sentence, capitalization, suffixes, context information, lists
of entity triggers for NE. The features c[1-6], C[1-7], d[1-3] refer to the words in
a {−3, +3}, window of the anchor word a.

We extracted two, three and half substrings of the anchor word, knowing that
some prefixes and suffixes are good indicators for certain classes of entities, taking
into account the morphological structure of a word and its paradigm. In general
suffixes are more informative, for Spanish endings as -er,-or,-ista imply person’s
occupation pianista, futbolista, profesor, director and can help during detection
and classification phase. It is surprising the number of Spanish surnames that
end in -ez, meaning “son of”, like the suffix -son and -sen in many German
and Scandinavian languages, -ov,-ova,-ev,-eva in Russian and Bulgarian, and-
es in Portuguese. (e.g. Fernandez is the son of Fernando [Ferdinan]). Of course
these examples have many exceptions, but the information they contribute is

220 Z. Kozareva, O. Ferrández, A. Montoyo, R. Muñoz

– a: anchor word (e.g. the word to be classified)
– c[1-6] : word context at position ±1, ±2, ±3
– C[1-7] : word capitalization at position 0, ±1, ±2, ±3
– d[1-3] : word +1,+2,+3 in dictionary of entities
– p: position of anchor word
– aC : capitalization of the whole anchor word
– aD : anchor word in any dictionary
– aT : anchor word in dictionary of trigger words
– wT : word at position ±1, ±2, ±3 in a dictionary of trigger words
– aL: lema of the anchor word
– aS : stem of the anchor word
– aSubStr[1-5] : ±2, ±3 and half substring of the anchor word

Fig. 1. Features for NE detection

significant when combined with other features. The lemma expands the search
in the gazetteers’ list we maintain, we can have the word ”profesor” but not
”profesora” and by the lemma which returns the base of the word, we are going
to have a positive vote.

2.2 Features for NE classification

The tags used for NE classification are PER, LOC, ORG and MISC as defined
by CoNLL-2002 shared task. For classification, the first seven features used by
the BIO model (e.g. a, c[1-6], p) were used as well as the additional set described
in Figure 2. The gazetteers for the attributes gP, gL and gO have been collected
randomly from cites as yellow pages.

– eP : entity is trigger PER
– eL: entity is trigger LOC
– eO : entity is trigger ORG
– eM : entity is trigger MISC
– tP : word ±1 is trigger PER
– tL: word ±1 is trigger LOC
– tO : word ±1 is trigger ORG
– gP : part of NE in gazetteer for PER
– gL: part of NE in gazetteer for LOC
– gO : part of NE in gazetteer for ORG
– wP : whole entity is PER
– wL: whole entity is LOC
– wO : whole entity is ORG
– NoE : whole entity not in one of the defined three classes
– f : first word of the entity
– s: second word of the entity
– clx : capitalization, lowercase, other symbol

Fig. 2. Features for NE classification

Language Portable Detection for Spanish Named Entities 221

2.3 Classification methods

For NE detection we worked with Memory-based learning and Hidden Markov
Model, while for NE classification we had also Maximum Entropy.

The memory-based software package we used is called TiMBL [3]. Its de-
fault learning algorithm, instance-based learning with information gain weight-
ing (IB1IG) was applied. The Hidden Markov Models toolkit ICOPOST2 devel-
oped by [8] has been functioning for POS tagging, but we adapted it for NER.
The maximum entropy classifier we worked with was a very basic one with no
smoothing or feature selection, implemented in C++ by [9].

3 Classifier combination and Data

3.1 Classifier combination

It is a well-known fact that if several classifiers are available, they can be com-
bined in various ways to create a system that outperforms the best individual
classifier. Since we had several classifiers available, it was reasonable to inves-
tigate combining them in different ways. The simplest approach to combining
classifiers is through voting, which examines the outputs of the various models
and selects the classifications which have a weight exceeding some threshold,
where the weight is dependent upon the models that proposed this particular
classification. It is possible to assign varying weights to the models, in effect
giving one model more importance than the others. In our system, we assigned
to each model the weight corresponding to the correct class it determines.

3.2 Data and its evaluation

The Spanish train and test data we used are part of the CoNLL-2002 [7] corpus.
For training we had corpus containing 264715 tokens and 18794 entities and for
testing we used Test-B corpus with 51533 tokens and 3558 entities.

The Portuguese corpus we used is part of HAREM3 competition with 68597
tokens and 3094 entities for training, and 22624 tokens and 1013 entities for
testing.

Scores were computed per NE class and the measures used were Precision
(of the tags allocated by the system, how many were right), Recall (of the tags
the system should have found, how many did it spot) and Fβ=1(a combination
of recall and precision). Conlleval evaluation script was used in order to have
comparable results with the CoNLL-2002 systems.

2 http://acopost.sourceforge.net/
3 http://poloxldb.linguateca.pt/harem.php

222 Z. Kozareva, O. Ferrández, A. Montoyo, R. Muñoz

4 NE recognition by BIO model

Our NER system is composed of two passages
1. detection: identification of sequence of words that makes up the name of

an entity.
2. classification: deciding to which category our previously recognized entity

should belong.
For NE detection we follow the BIO model described briefly in subsection

2.1. Our experiments with TiMBL started using set C24 = A/ {aSubStr[1− 5]},
which contained all attributes as lemma, dictionaries, trigger words etc. The ob-
tained results have been satisfactory as can be seen in Table 1, but since we
have been searching for an appropriate feature set F that maximizes the per-
formance, minimizes the computational cost and being language portable, we
made a study of the features and selected the most informative ones according
to the information gain measure. Four candidate sets were formed and we de-
note them by C24r = {a, c[1− 6], C[1− 7], p, aC, wD,wT, aL, aS} and C17 =
C24r/ {c[5− 6], C[6− 7]}; considered as language dependent (they use dictionar-
ies, tools as lemmatizers, stemmers etc.) and E12 = {a, c[1− 4], C[1− 5], p, aC}
and E17 = E12∪{aSubStr[1− 5]}, considered as language portable. The results
of each individual set can be seen in Table 1.

Tags B(%) I(%) BIO(%)

Classifier Prec. Rec. Fβ=1 Prec. Rec. Fβ=1 Prec. Rec. Fβ=1

TMB-C24 94.42 95.19 94.81 87.25 85.67 86.45 92.51 92.61 92.56
TMB-C17 94.47 95.11 94.79 87.28 85.37 86.31 92.56 92.47 92.51
TMB-C24r 94.63 94.01 94.32 87.99 85.07 86.50 92.86 91.58 92.22
HMM-CD 92.18 93.82 92.99 83.94 81.98 82.95 90.01 90.60 90.31
HMM-CW 92.40 93.99 93.19 83.71 81.00 82.33 90.13 90.46 90.29

Vote 1 ld 95.31 95.36 95.34 88.02 87.56 87.79 93.34 93.24 93.29

TMB-E12 94.33 94.91 94.62 87.00 85.29 86.14 92.38 92.30 92.34
TMB-E17 94.17 95.28 94.72 87.62 85.37 86.48 92.44 92.59 92.51
HMM-CW 92.40 93.99 93.19 83.71 81.00 82.33 90.13 90.46 90.29

Vote 2 li 94.43 95.73 95.07 88.31 86.05 87.17 92.81 93.10 92.96

Table 1. BIO for Spanish

Initially to HMM we passed the NE and the tag associated with it. The
obtained performance of 88.63% is less than each one of TiMBL’s individual
sets, however this difference is compensated with the number of features TiMBL
uses. For the word Don Simon, which in one text can mean a name of a person or
organization (e.g. company name), in order to determine its correct significance
more information is needed. One advantage of HMM is its time performance
of several minutes in comparison with the other methods, but fails in adding
lots of features. As studied by Rössler [6] to HMM features can be passed by

Language Portable Detection for Spanish Named Entities 223

Tags B(%) I(%) BIO(%)

Classifier Prec. Rec. Fβ=1 Prec. Rec. Fβ=1 Prec. Rec. Fβ=1

TMB-E12 82.50 83.32 82.91 72.77 64.77 68.53 79.59 77.26 78.41
TMB-E17 80.13 83.22 81.65 69.64 58.86 63.80 77.16 75.27 76.20
HMM-CW 77.83 68.61 72.93 61.02 58.66 59.81 72.01 65.36 68.53

Vote 3 li 82.35 84.30 83.32 72.75 65.78 69.09 79.47 78.26 78.86

Table 2. Language portable BIO for Portuguese

corpus or tag transformation. We studied both possibilities and saw that tag
transformation gave better results. We took the two most informative attributes
- word capitalization and whole word in capitals, plus the gazetteer list and
passed them as features to the B and I tags. For La Coruña we have B-XX and
I-XX tags, where the XX take binary features. With HMM-CD we denote the
results after passing the attributes word capitalization and word in dictionary
and with HMM-CW the results from word capitalization and whole word in
capitals. Adding these attributes, HMM’s performance increases with around
1.68%.

The obtained results from all BIO sets for Spanish can be observed in Table
1, there we mention the language dependent sets for comparison, but for further
experiments (classification) we consider the results from the language portable
sets. In Table 2 we demonstrate Portuguese language portable BIO detection
using the same sets as for Spanish.

The coverage of tag O is high due to its frequent appearance, however its
importance is not so significant as the one of B and I tags, who actually detect
the entities. For this reason we demonstrate separately system’s precision, recall
and f-score for B and I tags. The best score for Spanish BIO was obtained by
TiMBL considering the complete C24 set with f-score of 92.56%. Comparing this
score with set C17 where he number of features is reduced, the word window
diminished from ±3 to ±2, the difference of 0.05% is insignificant. Set C24r was
studied for reducing some noisy attributes from set C24 but still keeping the ±3
window. Its total BIO performance decreased but gained 86.50% - the highest
f-score per I tag.

The language portable sets perform quite similar to the dependent ones. For
tag B, set E12 with its 12 attributes performs better than C24r. The complete
BIO for E12 is better than those of C24r. TMB-E17 improves slightly the overall
results of E12 and has similar results to C17. For tag I it performs better than
C24, C17 and has 0.02% less performance than C24r.

The classifiers used different feature sets and we noticed that one classifier
detects an entity while the other doesn’t. The classifiers used different feature
sets and we noticed that one classifier detects an entity while the other doesn’t.
After obtaining the different results we applied voting techniques grouping the
language dependent sets in vote one and the language portable sets in vote
two. The difference of 0.33% between Vote 1 language dependent with 93.29%
performance and Vote 2 language portable with 92.96% f-score shows how small

224 Z. Kozareva, O. Ferrández, A. Montoyo, R. Muñoz

Tags LOC(%) MISC(%) ORG(%) PER(%)

Classifier Prec. Rec. Fβ=1 Prec. Rec. Fβ=1 Prec. Rec. Fβ=1 Prec. Rec. Fβ=1

ME-F24 81.16 74.72 77.81 69.29 49.12 57.49 74.21 84.07 78.83 82.95 88.03 85.41
TMB-F24 75.70 75.28 75.49 55.03 51.47 53.19 75.22 79.79 77.44 84.53 83.27 83.89
ME-F24clx 81.94 74.91 78.27 69.67 50.00 58.22 73.92 84.00 78.64 83.18 88.16 85.60

TMB-F24clx 74.84 75.46 75.15 55.88 50.29 52.94 75.88 79.79 77.79 85.42 85.31 85.36
TMB-R24 80.08 75.65 77.80 57.95 48.24 52.65 77.01 81.36 79.12 79.24 88.30 83.53

TMB-R24clx 79.20 75.18 77.14 63.20 50.00 55.83 76.14 81.36 78.66 80.15 88.44 84.09
HMM 74.85 67.80 71.15 44.66 46.76 45.69 72.06 73.86 72.95 66.11 74.83 70.20

VM24T24fclxH 81.16 75.92 78.46 66.80 49.71 57.00 75.06 83.21 78.93 83.72 89.52 86.52

Table 3. NE classification

feature set containing attributes independent from any tools, dictionaries or
gazetteers can give good and similar results to the dependent sets.

Taking in mind that Spanish and Portuguese are languages having similar
behavior, we studied and saw how attributes valid for Spanish were directly
adopted by Portuguese. In Table 2 we to show the results for Portuguese after
applying the same set of portable features as for Spanish. With voting 83.32%
f-score for B tag and 78.86% for complete BIO were achieved. These results are
acceptable since we didn’t have sufficient training data and the annotated corpus
we used had significant number of errors.

4.1 BIO error Analysis

After analyzing the obtained results, we saw that some of the occurred errors can
be avoided by applying simple post-processing: when an I tag has been preceded
by O tag we substituted it by B if the analyzed word starts with a capital letter
and in the other case we simply put O; sequences such as OBIBI, have been
transformed into OBIII. (see the example in subsection 2.1).

For Spanish around 2% of the errors came from the annotated corpus, some-
times quotation mark symbol was annotated as B and sometimes as O. Por-
tuguese corpus was quite noisy having entity as v+,n 12 annotated as organiza-
tion or some names of people were even not annotated.

One of our attributes concerns word capitalization and had great impact
over the detection task. We noticed how sometimes words starting a sentence
but not belonging to any of the named entity classes were classified as B tags.
A statistical study of word frequency, determines if a word at the beginning
of a sentence should have a B tag or not. The word variants (e.g. writing of a
word), their individual frequency and neighbors with which these words appear
are studied. Thus we have been able to correct and avoid this kind of error.

Language Portable Detection for Spanish Named Entities 225

Tags LOC(%) MISC(%) ORG(%) PER(%)

Classifier Prec. Rec. Fβ=1 Prec. Rec. Fβ=1 Prec. Rec. Fβ=1 Prec. Rec. Fβ=1

ourNE 81.16 75.92 78.46 66.80 49.71 57.00 75.06 83.21 78.93 83.72 89.52 86.52
WNC 79.15 77.40 78.26 55.76 44.12 49.26 74.73 79.21 76.91 80.20 89.25 84.48
CY 79.66 73.34 76.37 64.22 38.53 48.16 76.79 81.07 78.87 82.57 88.30 85.34
Flo 82.06 79.34 80.68 59.71 61.47 60.58 78.51 78.29 78.40 82.94 89.93 86.29

CMP 85.76 79.43 82.43 60.19 57.35 58.73 81.21 82.43 81.81 84.71 93.47 88.87

Table 4. CoNLL-2002 NE classification

Classifier Prec. % Rec. % Fβ=1 %

CMP 81.36 81.40 81.39
Flo 78.70 79.40 79.05

ourNE 78.09 79.10 78.59
CY 78.19 76.14 77.15

Table 5. Complete system performance

5 NE classification

After detection follows NE classification into LOC, MISC, ORG or PER class
as defined by CoNLL-2002. For this task, we used the results obtained from the
language portable detection.

For ME and TiMBL, we started the classification with a set composed of
24 features as described in subsection 2.2. Let us denote by F24 the set having
features: a, c[1-6], p, eP, eL, eO, eM, tP, tL, tO, gP, gL, gO, wP, wL, wO, NoE, f
and s. In Table 3 comparing the performance of ME and TiMBL with the same
set can be seen how ME classifies better for each one of the classes.

Choosing the most informative attributes,{a, c[1], eP, gP, gL, gO, wP,
wL, wO, NoE, f}, we create a set R24, where R24 ⊂ F24. In Table 3 we displayed
only the results obtained by TiMBL, because ME needs a lot of time for training
and testing. When both classifiers were compared on small random samples from
the original set, we saw that TiMBL performs better with the reduced set. When
R24 was tested with the complete data TiMBL achieved the highest result for
ORG class of 79.12%. Two additional sets R24clx = R24∪{clx} and F24clx =
F24 ∪ {clx}, where clx is the attribute described in Figure 2, were constructed.
R24clx lowered the performance for LOC and ORG class compared to the R24
set but performed better dealing with MISC and PER class. By adding clx
attribute to F24, ME improved its performance with 0.46% for LOC and 0.19%
for PER class and gained the maximum score of 58.22% for MISC class. Using
the same set TiMBL decreased its score for LOC and MISC class and slightly
improved ORG and PER classes. Among all classifiers, HMM has the lowest
score per class. The voting we applied considers ME-F24, Timbl-F24clx and
HMM results.

We have seen how the elimination or addition of features gave impact over
given types of classes during classification. As a whole our systems perform well

226 Z. Kozareva, O. Ferrández, A. Montoyo, R. Muñoz

when classifying into PER,ORG and LOC class, but not when dealing with
MISC class which is difficult to be detected due to its heterogeneity.

6 Comparison with CoNLL-2002 systems

We demonstrated the performance of NER considering different machine learning
methods, where the advantages and disadvantages of each one of them being
in time performance or feature maintenance was shown. Apart from this it is
very interesting to make a comparative study with the systems participating in
CoNLL-2002 shared task, since our system has been developed using the same
data; we should take in mind that our classification has been based on language
portable detection.

Table 4 represents the results per class for our system and the first four
best performing systems in CoNLL-2002; WNC[4], CY[2], Flo[5], CMP[1]. When
classifying into LOC class our system performed with 0.2% and 2.09% better
than the one of Wu and Cucerzan and less with 2.22% and 3.97% from the
systems of Florian and Carreras. Our classification into MISC class was better
with 7.74% and 8.84% compared to the one of Wu and Cucerzan and less with
3.58% and 1.73% from Florian and Carreras. For ORG and PER classes we
outperformed all systems except the one of Carreras. With Wu’s system we have
2.02% and 2.04% better score per ORG and PER class, from Cucerzan’s 0.06%
and 1.18% and from the system of Florian 0.53% and 0.23%.

We separated the overall performance of the first three best performing sys-
tems in Table 5. Comparing the f-score our system performs with 1.44% better
than the third one, with 0.46% less than the second and with 2.8% less than the
first system.

7 Conclusions and future work

We presented a combination of machine learning methods (Memory-based learn-
ing, Maximum Entropy and HMM) for performing NE detection and classifica-
tion task for Spanish. Aiming at minimal feature space and restraining from
dictionaries or other language dependent tools, we demonstrated one language
portable detection for Spanish and Portuguese. The Portuguese system served
as proof for our experiments and hypothesis. At present we didn’t study the
achievement of language portable classification over Spanish and we depend on
gazetteers but in future we intend to work on this task. Comparing our results
with CoNLL-2002 participants the f-score results of 78.46% for LOC, 57.00%
for MISC, 78.93% for ORG and 86.52% for PER are quite encouraging and are
among the second and third system.

As future work we intend to develop and use specific dictionaries for NEs,
to apply the same method for languages as Catalan, Italian and French. We are
interested in dividing the original three base tags into more detailed ones, for
example: ORG class into administration, institution, company etc. A Word Sense
Disambiguation module is going to be included and the rule based system that

Language Portable Detection for Spanish Named Entities 227

was separately developed and deals with weak entities such as El presidente del
Gobierno de La Rioja is going to be merged with the machine learning module
we have developed.

Acknowledgements

This research has been funded by the Spanish Government under project CICyT
number TIC2003-07158-C04-01 and PROFIT number FIT-340100-2004-14 and
by the Valencia Government under project numbers GV04B-276 and GV04B-
268.

References

1. Xavier Carreras, Llúıs Màrques, and Llúıs Padró. Named entity extraction using
adaboost. In Proceedings of CoNLL-2002, pages 167–170. Taipei, Taiwan, 2002.

2. Silviu Cucerzan and David Yarowsky. Language independent ner using a unified
model of internal and contextual evidence. In Proceedings of CoNLL-2002, pages
171–174. Taipei, Taiwan, 2002.

3. Walter Daelemans, Jakub Zavrel, Ko van der Sloot, and Antal van den Bosch.
TiMBL: Tilburg Memory-Based Learner. Technical Report ILK 03-10, Tilburg
University, November 2003.

4. Marine Carpuat Jeppe Larsen Dekai Wu, Grace Ngai and Yongsheng Yang. Boosting
for named entity recognition. In Proceedings of CoNLL-2002, pages 195–198. Taipei,
Taiwan, 2002.

5. Radu Florian. Named entity recognition as a house of cards: Classifier stacking. In
Proceedings of CoNLL-2002, pages 175–178. Taipei, Taiwan, 2002.

6. M. Rössler. Using markov models for named entity recognition in german newspa-
pers. In Proceedings of the Workshop on Machine Learning Aproaches in Compu-
tational Linguistics, pages 29–37. Trento, Italy, 2002.

7. Tijong Kim Sang. Introduction to the conll-2002 shared task: Language independent
named entity recognition. In Proceedings of CoNLL-2002, pages 155–158, 2002.

8. Ingo Schröder. A case study in part-of-speech tagging using the icopost toolkit.
Technical Report FBI-HH-M-314/02, Department of Computer Science, University
of Hamburg, 2002.

9. Armando Suárez and Manuel Palomar. A maximum entropy-based word sense
disambiguation system. In Hsin-Hsi Chen and Chin-Yew Lin, editors, Proceedings
of the 19th International Conference on Computational Linguistics, COLING 2002,
pages 960–966, August 2002.

228 Z. Kozareva, O. Ferrández, A. Montoyo, R. Muñoz

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 229-238

230 R. Guillen

Boosting Applied to Spanish Word Sense Disambiguation 231

232 R. Guillen

Boosting Applied to Spanish Word Sense Disambiguation 233

234 R. Guillen

Boosting Applied to Spanish Word Sense Disambiguation 235

236 R. Guillen

Boosting Applied to Spanish Word Sense Disambiguation 237

238 R. Guillen

A Cognitive-Based Approach to
Adaptive Intelligent Multiagent Applications

Charles Hannon

Department of Computer Science
Texas Christian University

Fort Worth, TX
c.hannon@tcu.edu

Abstract. An integrated cognitive-based model (LEAP) and application
(SALT) are presented. Building on a new Interlaced Micro-Patterns (IMP) the-
ory and the Alchemy/Goal Mind environment, the LEAP research improves
agent-to-human and agent-to-agent communication by incorporating aspects of
human language development. The IMP theory further provides a theoretical
basis for deep incorporation and sharing of knowledge from different sensor
modalities. Research on LEAP points to a better understanding of human lan-
guage development and the application of this knowledge within intelligent
multiagent applications Research with SALT points to how this research sup-
ports Smart Home applications and provides feedback to LEAP modeling.

1 Introduction

Many intelligent multiagent applications can be improved by an adaptive agent or-
ganization that can not only re-task existing agents, but also add new agent capabili-
ties to deal with changing requirements. While this level of agent adaptability pre-
sents a complex problem in design and construction, humans present an archetype for
such abilities. In this article we will show how a study of one complex human skill
(reading) can be used to drive adaptive multiagent design and how the information
used from this study can be used in a Smart Home multiagent application.

To study language use and learning within a reading task, a robust distributed cog-
nitive model called LEAP (Language Extraction from Arbitrary Prose) and a new
working theory of cognition called IMP (Interlaced Micro-Patterns) are used. One
focus of the LEAP/IMP research is to study how lexical, syntactic, semantic and
conceptual information can be learned from a set of English language web-based
sources. However, LEAP can also explain how language development occurs within
the context of general cognitive development using all sensory modalities. By focus-
ing on both ability and performance within this broader context, LEAP can provide
insight into more general use and learning of cognitive skills that can be directly
integrated into intelligent multiagent applications that serve to test the current work-
ing theories (e.g., IMP) of the models themselves.

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 239-248

LEAP is developed using the components of the Gold Seekers project depicted in
Figure 1. Building on existing non-computational models and other research, the
Gold Seekers project attempts to develop working theories (like IMP) that can be
used to build modular computational models using Alchemy/Goal Mind [7]. These
modules (or Agent Components) can be reused in other agent models to test other
aspects of cognition or as the starting point of cognitive-based applications. The
Smart-environment Adaptive-agent Language and Tasking (SALT) application builds
on the our model research to explore how a dynamically constructed and tasked mul-
tiagent model can be used to allow a smart environment to better adapt to its users.
SALT forms an integral part of the overall research by providing feedback on how
the models handle a ‘real world’ application.

2 Related Work

Numerous ongoing research projects have applied machine learning techniques di-
rectly to the way a smart environment learns user preferences. The SALT application
research is focused on adaptation through the way agents communicate and share
tasks. For this reason we will focus our related work discussion on the LEAP model.

Neurobiology

Experimental
Psychology

Linguisitics

Philosopy
of the Mind

Software
Engineering

Theoretical
Computer Science

Neurophysical
Based Models

Performance
Based Models

Introspection
Based Models

Working Brain/Mind Theories

Alchenmy
Goal Mind

Computational
Models

Agent
Components Agents

Mult iagent
Applications

The Gold Seekers Project

Fig. 1. Computational models are used to produce the agent components making up agents
within a multiagent application. Components’ design, construction, testing and operation are
supported by Goal Mind. The distribution, migration and control of component processes and
the resulting agent multi-processes across multiple processors are supported by Alchemy.

240 Hannon Ch.

The two language models that LEAP directly build upon are the TALLUS [5] and
STRESS [6]. We will briefly contrast the current research with some other cognitive
modeling environments and two language-related knowledge bases, before address-
ing the theory of spreading activation which is a key element in the LEAP model.

2.1 Related Language Modeling and Capture Efforts

A number of on-going research efforts are addressing the cognitive modeling of lan-
guage at some level. Many of these models address language within the context of
other sensor modalities and are aimed at directly supporting an agent-based applica-
tion. LEAP attempts to; 1) be explanatory, 2) be closely tied to well know cognitive
mechanisms such as priming, spreading activation and memory consolidation, and 3)
directly support use of its components within multiagent applications. This makes it
similar to models built with SOAR [8], ACT-R [1] and ACT-R/PM [3]. The major
difference between Alchemy/Goal Mind and these other architectures is that the Al-
chemy/Goal Mind models are created out of a set of concurrent components which
are free to use their own cognitive sub-theories with the main cognitive theory con-
trolling the method in which these components interact. This can be contrasted with
the other environments where models are monolithic processes controlled some un-
derlying cognitive mechanism such as ACT-R’s symbolic productions and subsym-
bolic activations.

Some multiagent efforts rely on existing language knowledge bases. Compared to
projects like WordNet and Cyc, that attempt to capture language and concept knowl-
edge in large publicly available databases, LEAP currently has an extremely small
database of language knowledge. For example, WordNet contains 144,309 unique
words organized into synonym sets representing underlying lexical concepts [4]. The
Cyc knowledge base contains almost 2 million assertions (rule and fact), 118,000
concepts and a lexicon of 17,000 English root words [11]. Both WordNet and Cyc
have been very instrumental in our discovery of the underlying structure of the way
language and concept reasoning works, but this does not directly translate to making
them useful candidates for knowledge components within an adaptive multiagent
application. In contrast to simply using a vast store of language knowledge, LEAP is
attempting to capture the way humans learn by the slow consolidation of knowledge
into a complex and multifaceted representation of their surrounding world and to use
the resulting structure of that representation to discover how we can simulate human
development within adaptive agents.

2.2 Spreading Activation

Memory priming via a spreading activation mechanism is a very old concept going all
the way back to a direct extension of the Quillian work on Semantic Memory in the
1960’s [10]. The original theory, proposed by Collins and Lofus in 1975 proposes
that is-a, reverse is-a (what TALLUS and LEAP calls a could-be relation), has-a and
part-of semantic relations will be followed to activate parent, children, and other
associated nodes within a person’s semantic network making it easier to retrieve these

A Cognitive-Based Approach to Adaptive Intelligent Multiagent Applications 241

concepts immediately after the original concept retrieval [9]. Several psychology
experiments in the 1970’s and later demonstrated that the priming effects proposed by
the spreading activation mechanism were observable [2].

While symbolic AI systems have focused mostly on the priming aspects of spread-
ing activation, a number of connectionist systems have also explored the effect of
lateral inhibition where the activation of a concept can cause the retrieval of related
concepts to be blocked for a period of time after that activation. Psychology experi-
ments appear to show that lateral inhibition works with spreading activation to allow
us to more quickly determine that some statements are counter-to-fact [10].

The most mature cognitive modeling treatment of spreading activation to date is
seen in the ACT-R architecture which uses production rules, not a classic semantic
network, in its primary knowledge representation. Other semantic network based
systems that use it tend to do something similar to ACT-R by calculating the amount
of activation for a node based on its distance from the activated node, and then using
the resulting number to artificially control the lookup between nodes during infer-
ence. As will be shown later, we will take a radically different approach to simulation
spreading activation in the LEAP model.

3 Interlaced Micro-Patterns (IMP) Theory

Pattern matching as an important mechanism in the learning, retrieval and recall of
simple concepts and procedures have been accepted in both machine learning and
cognitive psychology research for some time. The Interlaced Micro-Patterns (IMP)
cognitive theory extends the traditional pattern matching mechanism by proposing
that if a set of simple patterns are interlaced (i.e., allowed to overlap), the mechanism
can be used to learn, retrieve and recall elements of far greater complexity, and thus,
could be the driving mechanism of such tasks as language use and learning. The sup-
port for IMP as a working theory comes from both a set of thought problems and the
results of cognitive modeling work.

The first language model using what would become Alchemy/Gold Mind was
TALLUS which was designed to study telegraphic speech (the second true language
development phase in humans) within a visual context. Like most language models,
TALLUS used a standard generative linguistic theory that proposed that utterances
are generated by phrase structure rules that result in the utterance being associated as
the leaf nodes of a hierarchical tree structure starting from a root node utterance or
sentence. Given a set of generative rules, TALLUS could easily learn new surface
forms and their associated concepts, but no believable explanatory mechanism for
learning new syntax and their associated conceptual grids could be found.

This model failure resulted in the first thought problem. Why do children find it
much easier to learn a natural language than the proposed grammar rules that are
suggested to define such a language? Hierarchical syntactic approaches to natural
language (NL) align well with the way NL grammars are taught in traditional educa-
tional settings, but not with how language development naturally occurs. The teach-
ing of prescriptive grammars may help to stabilize language use across a group of
language users, but it seldom controls the complete use of either spoken or written

242 Hannon Ch.

language ‘rules’ in that group with much of that use being driven by either a con-
scious or unconscious violation of the prescriptive rules. Many non-generative lin-
guistic theories use this same argument to dismiss generative approaches, but these
theories seldom provide a mechanism that could be used in a computational model of
language.

So, is there a way to capture the computational strength of generative grammar
without it being driven by a hierarchical set of rules? One possible method to do this
is to use interlaced micro-patterns. While all possible well-formed utterances conform
to some syntactic, semantic and conceptual pattern, the storage of every possible
utterance pattern would clearly be too computationally complex to be feasible. How-
ever, if all possible sentence patterns were made up of smaller patterns that relied on
overlapping elements to ensure correctness, a set of smaller patterns could not only
generate correct utterances, but also block the creation of malformed utterances.

To test this approach, the LEAP model was constructed, which has confirmed the
viability of the IMP theory for language learning. Further, it has introduced two new
questions. Could the IMP theory supply an underlying mechanism for all cognition?
And, could differences in the potential size of micro-patterns and their ability to inter-
lace be an underlying control in the level of cognitive abilities exhibited by a biologi-
cal organism?

3.1 IMPs Relationship to Symbolic AI

It is fairly simple to see how the IMP theory would map to a connectionist approach
since the patterns can simply be distributed among the weights of connections; how-
ever, Alchemy/Gold Mind is basically a symbolic AI approach so we need to address
the symbolic mapping a little further. Due to the large amount of existing research
with different Knowledge Representation and Reasoning (KRR) methods, what we
do not want is a theory that limits the types of symbolic reasoning possible within an
application. Luckily, it can be shown that using the IMP theory as an overall control
mechanism does not require such a limitation.

In summary, we can define a system’s composite KRR as a set of layered compo-
nent KRRs with each component’s KRR being any desired type. This composite KRR
can be stored in Long Term Memory (LTM) and access points within each layer can
be activated into Short Term Memory (STM) by a pattern input from an external
source (either another layer within the agent or an interface to the external world). In
addition to the actual access points activated, other parts of the layer’s KR can be
activated by a temporal-based spreading activation mechanism when needed and
deactivated by removal from the STM when the knowledge is ‘timed-out’. Changes
to the KRR can occur by updating the KR stored in LTM as a result of changes that
occur in STM during activation.

A simple formalization of the effect of using IMP to control a layered KRR can be
given if we simplify the KR of an agent to a uniform set of semantic networks. Each
of these semantic networks can be viewed as a directed multi-graph,

Rn = pair (Νn , Αn), Αn = {(νni , νnj) | νni , νnj ∈ Νn} (1)

A Cognitive-Based Approach to Adaptive Intelligent Multiagent Applications 243

where, n is the level of representation, Νn is a set of nodes, and An is a bag of named
relationships between these nodes. A sub-representation of this network can be de-
fined as,

R′n = pair (Ν′n , Α′n), Ν′n ⊆ Νn , and
Α′n ⊆ Αn ∧ ((νni , νnj) ∈ Α′n → νni , νnj ∈ Ν′n).

(2)

All possible sub-representations at a level n is, of course, the power set of Rn; how-
ever, this set has little meaning in the IMP theory since only the activated
subrepresentations are of interest. Given all possible activated sub-representations at a
level n, defined as,

Φn = {R′n | R′n ⊂ Rn ∧ active(R′n) → True}, (3)

connections between representation levels can also be viewed as a directed multi-
graph,

Κi, j = pair (Φi,j , Γi,j), Φi,j = R′i ∪ R′j, and
Γi,j = {(R′i , R′j) | R′i , R′j ∈ Φi,j },

(4)

where, i and j are levels of representation being connected and Γi,j is a set of named
relationships between these levels.

The number of representation levels (Rn) and number of level connections (Κi,j)
can vary based on application. A traditional agent-based method for using the overall
representation structure would be a set of m stacks of representation levels 1 to k with
the top-level (level 1) of each stack being an interface representation and the kth level
of each stack being either a common conceptual structure or a set of connected con-
ceptual structures.

Given a set of available general inference rules at each level (ρn) and between two
levels (ρi,j), the extent of general inference at each level (ιn) and across levels (ιi,j) can
be naively described as,

ιn ≈ | ρn | and ιi,j ≈ | ρi,j |, (5)

assuming no serious difference exist in the number of pre and post conditions of each
rule. The total extent of representation at each level also can be naively described as,

γn ≈ | Νn | • max {νni , νnj}d(νni , νnj), (6)

which given the amount of accessible (or activated) knowledge at each level being
βn = ∪Φn, leads to an activated representation extent of,

αn ≈ | βn | • max {νni , νnj}d(νni , νnj) | νni , νnj ∈ βn and
αi,j ≈ | Φi,j | • max {R′i , R′j}d(R′i , R′j).

(7)

The activation potential at any level can be described as,

ηn ≈ Σ{i = 1 to k} αi,j • ιi,j , (8)

and its inference potential as,

244 Hannon Ch.

κn ≈ αn • ιn . (9)

Assuming that we only allow a pattern matching activation mechanism to work be-
tween levels, the extent of cross-layer general inference (ιi,j) can be viewed as ap-
proaching the value one for all levels. Thus, the activation potential of all levels be-
comes approximately equal to their part of the cross-layer activated representation
extent, αi,j, which is simply their own activated representation extent αn. Thus, a pat-
tern matching interface between layers reduces the overall inference potential in each
layer to a function of the number of activated access points and its own inference
extent. To the outside world, any results of a layer’s inference engine look like an
Artificial Neural Network’s (ANN) forward or backward activation potentials.

4 The LEAP Model

The LEAP model is a distributed model for learning lexical, syntactic, semantic and
conceptual information about English from web-based sources. It is currently made
up of twenty Goal Mind components (each a multithreaded LINUX process) built on
the environment’s production system and semantic network libraries and its standard
PostgreSQL ‘C’ language interface.

At the surface language layer, LEAP uses a set of seven lexical analyzers and a
special purpose Stimuli Routing Network (SRN) used to filter some closed catego-
ries. It can discover new instances of open part-of-speech (PoS) categories and new
patterns of word use within the input utterances. The concept reasoner’s Situational
Dependences Semantic Network (SDSM) [5] uses spreading activation to allow a
very large network to exist in compressed form in the PostgreSQL database (simulat-
ing Long Term Memory or LTM) while small pieces of the network can be uncom-
pressed into a dynamic memory structure within each of the concept reasoners (simu-
lating Short Term Memory or STM).

When a word comes in from the models HMI or HTML reader, all lexical analyz-
ers look up the word in their PoS form table and send either an active or inhibit PoS
stimulus message based on this lookup. If the word is not found (i.e., either it is not in
the PoS form table or has too low a belief to be used), an analyzer uses reports from
other analyzers to try to find a PoS pattern in its PoS pattern table that would indicate
that the word may be of its PoS type. If a pattern is found, the word is either added to
the PoS form table with a very low belief or the belief of the existing form is incre-
mented based on this example that the word matches the expected pattern. If the word
is found but the surrounding words’ PoS do not match an existing pattern, a pattern is
either added to PoS pattern table with a very low belief or the belief of the existing
pattern is incremented based on this example of a valid pattern.

When a concept is looked up, it is copied from the database (LTM) to the dynamic
memory (STM) of a concept reasoner and given the maximum time to live by setting
its countdown timer to the maximum allowed value. In addition, all other nodes con-
nected via a set number of outbound relations are also activated (moved to memory)
and given a time to live based on their distance from the concept that was directly

A Cognitive-Based Approach to Adaptive Intelligent Multiagent Applications 245

accessed. The concept reasoner is only allowed to inference across active nodes, but
when it makes a valid connection between two concepts, it both reports the finding
and resets the time to live values for all nodes in the inference path. Running in the
background of each concept reasoner is a temporal collector that decrements the
countdown timer of each node during each time-slice and removes any node whose
counter alarms (hits zero) from STM.

5 The SALT Application

Building on the LEAP and earlier models, the SALT application explores how to
dynamically construct and task the control system for a smart environment. It has
long been recognized that smart environments need to learn the preferences of their
users, but to move them from the lab to mainstream use they will also need to adapt to
different and changing hardware environments. Each instance of a smart environment
will need to fit into an unique location where size, cost and other factors will deter-
mine the hardware being used. These systems will need to be able to accept new
smart components as they become available. Further, the control system must be able
to ‘work around’ failed hardware components to ensure both user comfort and safety.

In the current SALT application, five agents are used to test how these agents can
learn to communicate and distribute system tasking using a simplified language based
on human language lexical, syntactic and semantic constructs. Using seventy-two
Goal Mind components, the model current focuses more on language use than the
interface to system hardware or the smart environment control, but past Goal Mind
research indicates that more robust hardware interfaces and control structures can be
added by less than doubling the number of processes in these agents. Running an
application with about hundred and fifty processes is well within the capacity of Al-
chemy to handle on a relatively small Beowulf cluster.

In the current SALT model, a Control and Human Interface agent provides both
the Human Machine Interface (HMI) and overall smart environment task distribution.
A Kitchen agent controls kitchen appliances and provides meal planning and food
inventory control. An Entertainment agent controls entertainment equipment and
provides setup based on user preference. An Environmental Control agent monitors
A/C and safety components and attempts to match user preferences to safety and
efficiency constraints. An Inhabitant and Robot Tracking agent provides the system
with situation awareness about mobile elements of the environment using a multiple-
camera-based vision system.

Many aspects of the SALT application can exploit the power of the IMP theory. A
direct application of the LEAP research in SALT is in its HMI. By integrating the
HMI directly to the agents’ other sensor modalities, the resulting language interface
can be very adaptive. In the future we will build on this to allow the dynamic alloca-
tions of agents within the system to support different environments and hardware
conditions.

246 Hannon Ch.

6 Initial Results and Future Work

Both the LEAP and SALT research are presented here to provide an overview of how
the Gold Seekers environment allows the meaningful integration of both the theory
and application of cognitive approaches. To date, the LEAP results are better under-
stood and will be the focus of this section.

Reading tests with the LEAP model have been conducted on a number of chil-
dren’s stories and web-based news articles. Our current focus is on the size of micro-
patterns needed for LEAP to support surface and deep structure language learning
and use. To support testing, the learning results, which are stored in a PostgreSQL
database are compared against a version of WordNet also store in a PostgreSQL da-
tabase.

Current LEAP results fall into two basic categories, detailed analysis of individual
readings and general observations about language development and the reading task.
As expected, the current data from news articles shows that a great deal more lan-
guage priming is needed to learn at the same rate as with children’s stories. These
have led to several general observations. First, that using IMP, there is no good way
to short-circuit the normal development process starting with simple stories and work
up to more and more complex articles. Second, that reading development needs input
from other sensor modalities.

Most of the work with children’s stories demonstrate similar results so as an ex-
ample of a detailed analysis we will focus on a single story, Robert the Rose Horse.
The story contains approximately 1100 words and 200 utterances. This gives a mean-
length-of-utterance (MLU) of about 5.5. Ignoring closed categories, the vocabulary is
about 90 words. From this and other children’s stories studied, it is clear that authors
focus on the reduction of word length, lexical complexity and the MLU, but do not
necessarily attempt to reduce the syntactic complexity of the resulting utterances.

Using a database primed with 15 words of the core vocabulary and no patterns,
LEAP was able to detect 26 patterns. Increasing the core vocabulary to 20 words by
adding 5 nouns produced one additional noun pattern, while increasing the core vo-
cabulary to 22 words by adding 2 verbs produced 10 additional patterns. In all cases
the patterns were non-conflicting between PoSs. Most patterns show a minimal
amount of repeatability within a story, but a few are highly repeatable due to the
prose structure of children’s stories. These differences in repeatability is not common
in news articles. Continuing to add nouns and verbs to the core vocabulary continues
to show the same data trend where verbs influence the number of patterns found more
than other PoSs. As a result of the spreading activation mechanism used in the con-
cept reasoner, associations between new and exiting concepts can be more easily
identified. In Robert the Rose Horse this method was used to learn that ‘rose’ is a
type of ‘flower’ and ‘bank’ is a thing that can be ‘robbed’.

Applying LEAP results to SALT is driven by earlier work with the TALLUS
model. In TALLUS, we were able to greatly simplify the language generation task by
focusing on telegraphic speech patterns. The agent communication in SALT currently
relies on the same reduction in language complexity. There is clearly a point where
using a non-formal adaptive language adds too much overhead to an overall agent,
but a SALT-like environment is targeted for highly intelligent agents where this is not

A Cognitive-Based Approach to Adaptive Intelligent Multiagent Applications 247

a major factor. Initial work with SALT has shown that given a small shared vocabu-
lary and a set of patterns that represent a simple syntax, agents can learn a shared
language. We are still working on each agent’s semantic ties to this language.

Both the Gold Seekers’ toolset and the current models support the ability to dy-
namically create new agents which would allow a SALT-like application to add new
agents as new hardware is added and support other changes to the overall environ-
ment. While this is clearly an interesting line of research, the short-term focus of both
LEAP and SALT is in improving the integration of their language use.

7 Conclusion

Current work with IMP, LEAP and SALT demonstrate that they are providing valu-
able information about human language development and adaptive agent communica-
tion. As other uses of the IMP theory are explored, it is hoped that it will provide a
general mechanism for adaptive intelligence within a multiagent environment. The
SALT-based research should continue to provide an even better platform for testing
the concepts proposed by the LEAP research. While the integration of the LEAP and
SALT research paths provide complex challenges, the result of such integration ap-
pears to be worth such complexity.

References

1. Anderson, J. R. and Lebiere, C. Atomic Components of Thought. Hillsdale, NJ: Lawrence
Erlbaum Associates, Pub., 1998.

2. Anderson, J. R. Cognitive Psychology and its Implications. New York: W. H. Freeman
and Company, 1995.

3. Byrne, M., “ACT-R/PM and Menu Selection: Applying a Cognitive Architecture to HCI”,
International Journal of Human Computer Studies, 1999.

4. Fellbaum, C (Editor), WordNet: An Electronic Lexical Database, Cambridge, MA, MIT
Press, 1998.

5. Hannon, C. and D. J. Cook. “Developing a Tool for Unified Cognitive Modeling using a
Model of Learning and Understanding in Young Children.” The International Journal of
Artificial Intelligence Tools, 10 (2001): 39-63.

6. Hannon C. and D. J. Cook. “Exploring the use of Cognitive Models in AI Applications
using the Stroop Effect.” Proceedings of the Fourteenth International Florida AI Research
Society Conference, May 2001.

7. Hannon, C., A Geographically Distributed Processing Environment for Intelligent Sys-
tems. In Proceedings of PDPS-2002. 355-360, 2002.

8. Newell, A. Unified Theories of Cognition. London: Harvard University Press, 1990.
9. Martindale, C., Cognitive Psychology: A neural-Network Approach, Belmont, CA,

Brooks/Cole, 1991.
10. Smith, G. W., Computers and Human Language, New York: Oxford Press, 1991.
11. Witbrock, Michael, D. Baxter, J. Curtis, et al. An Interactive Dialogue System for Knowl-

edge Acquisition in Cyc. In Proceedings of the Eighteenth International Joint Conference
on Artificial Intelligence, Acapulco, Mexico, 2003.

248 Hannon Ch.

Modeling and Intelligent Controland
Logic

Orthogonal-Back Propagation Hybrid Learning
Algorithm for Interval Type-2 Non-Singleton Type-2

Fuzzy Logic Systems

Gerardo M. Mendez1, Luis A. Leduc2

1 Department of Electronics and Electromechanical Engineering
Instituto Tecnológico de Nuevo León

Av. Eloy Cavazos #2001, Cd. Guadalupe, NL, CP. 67170
MÉXICO

gmmendez@itnl.edu.mx
2 Department of Process Engineering

Hylsa, S.A. de C.V.
Monterrey, NL.

MÉXICO
lleduc@hylsamex.com.mx

Abstract. This article presents a new learning methodology based on an hy-
brid algorithm for interval type-2 non-singleton type-2 fuzzy logic systems
(FLS) parameters estimation. Using input-output data pairs during the for-
ward pass of the training process, the interval type-2 FLS output is calculated
and the consequent parameters are estimated by orthogonal least-square
(OLS) method. In the backward pass, the error propagates backward, and the
antecedent parameters are estimated by back-propagation (BP) method. The
proposed hybrid methodology was used to construct an interval type-2 fuzzy
model capable of approximate the behavior of the steel strip temperature as it
is being rolled in an industrial Hot Strip Mill (HSM) and used to predict the
transfer bar surface temperature at finishing Scale Breaker (SB) entry zone.
Comparative results show the advantage of the hybrid learning method (OLS-
BP) over that with only BP.

1 Introduction

Interval type-2 fuzzy logic systems (FLS) constitute an emerging technology. In [1]
the interval type-2 FLS learning methods are one-pass and back-propagation (BP)
methods. One-pass method generates a set of IF-THEN rules by using the given
training data once, and combines the rules to construct the final FLS. In back-
propagation, none of antecedent and consequent parameters of the interval type-2
FLS are fixed at starting of training process; they are tuned using BP method. Re-
cursive least-square (RLS) is not presented as interval type-2 FLS learning method.

One-pass and Back-Propagation (BP) are presented as type-2 FLS learning meth-
ods in [1]. One-pass method generates a set of IF-THEN rules by using the given

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 251-260

training data once, and combines the rules to construct the final fuzzy logic systems
(FLS). None of the antecedent and consequent parameters of interval type-2 FLS are
fixed at the start of the training process in BP; instead they are tuned by using the
steepest descent method. To the best knowledge of the authors, the hybrid learning
method has not been reported in type-2 FLS.

Only the BP learning method for type-2 FLS has been proposed in the literature,
therefore one of the main contributions of this work is to implement a new hybrid
learning algorithm for interval type-2 FLS, in view of the success of the hybrid
learning method in type-1 FLS [2]. In [3, 4] it is shown that hybrid algorithms im-
prove convergence over the BP method. In the forward pass, FLS output is calcu-
lated and the consequent parameters are estimated by either RLS [2] or REFIL [5]
methods. In the backward pass, the error propagates backward, and the antecedent
parameters are estimated by the BP method. In [3, 4] one of the proposed hybrid
algorithms is based on RLS, since it is a benchmark algorithm for parameter estima-
tion or systems identification. In addition, the parameter estimation method called
REFIL, has also been used since it improves performance over RLS [5]. Conver-
gence of the proposed methods has been practically tested; however mathematical
proof is still to be done in general for hybrid learning algorithms.

This papers proposes a hybrid learning algorithm for interval type-2 FLS for an-
tecedent and consequent parameter estimation during training process using input-
output data pairs. In the forward pass, FLS output is calculated and the consequent
parameters are estimated using REDCO [5] a recursive orthogonal least-square
(OLS) learning method. In the backward pass, the error propagates backward, and
the antecedent parameters are estimated by the BP method.

A second but very important purpose of this paper is to propose an application
methodology based on interval type-2 FLS and the hybrid learning method men-
tioned above for hot strip mill (HSM) temperature prediction. Interval type-2 FLS is
suitable for industrial modelling and control applications. The scale breaker (SB)
entry mean and surface temperatures are used by the finishing mill set-up (FSU)
model [6] to preset the finishing mill (FM) stand screws and to calculate the transfer
bar thread speed, both required to achieve the FM exit target head gage the target
head temperature.

In temperature prediction, the inputs of the fuzzy type-2 models, used to predict
the SB entry temperatures, are the surface temperature of the transfer bar at the
roughing mill (RM) exit ()1x and the time required by the transfer bar head to reach

the SB entry zone ()2x . Currently, the surface temperature is measured using a py-

rometer located at the RM exit side. Scale grows at the transfer bar surface produc-
ing a noisy temperature measurement. The measurement is also affected by envi-
ronment water steam as well as pyrometer location, calibration, resolution and
repeatability. The head end transfer bar travelling time is estimated by the FSU
model using FM estimated thread speed. Such estimation has an error associated
with the inherent FSU model uncertainty. Although temperature prediction ()y is a

critical issue in a HSM the problem has not been fully addressed by fuzzy logic
control systems [1, 3, 4].

252 G. Mendez, L. Leduc

The proposed algorithm is evaluated using an interval type-2 non-singleton type-
2 FLS inference system (type-2 NSFLS-2) which predicts the transfer bar surface
temperature at the SB entry zone.

This work is organized as follows. Section 2 gives the hybrid learning problem
formulation for interval type-2 fuzzy logic systems. Section 3 presents solution as an
adaptive training algorithm. Section 4 shows an interval type-2 NSFLS-2 application
for HSM temperature prediction using the hybrid learning method. Conclusions are
stated in Section 5.

2 Problem Formulation

Most of the industrial processes are highly uncertain, non-linear, time varying and
non-stationary [3, 4, 7], having very complex mathematical representations. Interval
type-2 FLS take easily the random and systematic components of type A or B stan-
dard uncertainty [8] of industrial measurements. The non-linearities are handled by
FLS as identifiers and universal approximators of nonlinear dynamic systems [9, 10,
11]. The stationary noise and non-stationary additive noise are handled in natural
way by interval type-2 FLS [1]. Such characteristics make interval type-2 FLS a
very powerful inference system to model and control industrial processes

In [1] only one-pass and back-propagation (BP) algorithms are presented as inter-
val type-2 FLS learning methods. Three basic problems for which it is not possible
to use RLS on interval type-2 FLS are explained:

1. The starting point for the RLS method to designing an interval singleton
FLS is a type-1 Fuzzy Basis Function (FBF) expansion. No such FBF ex-
pansion exists for a general type-2 non-singleton type-2 FLS. Since an in-
terval type-2 FLS output ()xy can be expressed as:

() () ()[]xpyxpyx r
T
rl

T
ly +=

2
1

 . (1)

 with M ordered rules, it looks like a least-squares method can be used to

tune the parameters in T
ly (matrix transpose of M left-points i

ly of conse-

quent centroids) and T
ry (matrix transpose of M right-points i

ry of conse-

quent centroids). Unfortunately, this is incorrect. The problem is that in or-

der to know the FBF expansions ()xp l and ()xp r , each i
ly and i

ry (the M

left-points and right-points of interval consequent centroids) must be known
first. Because at initial conditions of the calculations there are no numerical
values for those elements, it is impossible to do this; hence the FBF expan-
sions ()xp l and ()xp r cannot be calculated. This situation does not occur

for type-1 FBF expansion.
2. Although ly and ry (the end-points of interval type-2 FLS center-of-sets

type-reduced set COSY) can be expressed as an interval []ii ff , in terms of

Orthogonal-Back Propagation Hybrid Learning Algorithm for Interval... 253

their lower (if) and upper (
if) M firing sets, and the corresponding M

consequents left and right-points, i
ly and i

ry , as:

()M
ll

MLL
ll yyffffyy ,...,,,...,,,..., 111 += . (2)

()M
rr

MRR
rr yyffffyy ,...,,,...,,,..., 111 += . (3)

 where L and R are not known in advance [1]. L is the index to the rule-
ordered FBF expansions at which ly is a minimum, and R is the index at

which ry is a maximum. Once the points L and R are known, (1) is very

useful to organize and describe the calculations of ly and ry .

3. The next problem has to do with the re-ordering of i
ly and i

ry [1]. The

type-1 FBF expansions have always had an inherent rule ordering associ-

ated with them; i.e. rules MRRR ,...,, 21 always established the first, sec-
ond,…, and Mth FBF. This order is lost and it is necessary to restore it for
later use.

3 Problem Solution

3.1 Type-2 FLS

A type-2 fuzzy set, denoted by A~ , is characterized by a type-2 membership function
()uxA ,~µ , where Xx∈ and []1,0⊆∈ xJu and () .1,0 ~ ≤≤ uxAµ :

() ()() []{ }1,0,|,,,~ ~ ⊆∈∀∈∀= xA JuXxuxuxA µ . (4)

This means that at a specific value of x , say x′ , there is no longer a single value
as for the type-1 membership function ()u ′ ; instead the type-2 membership function

takes on a set of values named the primary membership of x′ , []1,0⊆∈ xJu . It is

possible to assign an amplitude distribution to all of those points. This amplitude is
named a secondary grade of general type-2 fuzzy set. When the values of secondary
grade are the same and equal to 1, there is the case of an interval type-2 membership
function [1, 12, 13, 14, 15].

3.2 Using Recursive OLS Learning Algorithm in Interval Type-2 FLS

Table 1 shows one pass learning algorithm activities BP method.

254 G. Mendez, L. Leduc

Table 1. One Pass In Learning Procedure for Interval Type-2 FLS

 Forward
Pass

Backward
Pass

Antecedent
Parameters

Fixed BP

Consequent
Parameters

Fixed BP

The proposed hybrid algorithm uses recursive OLS during forward pass for con-

sequent parameters tuning and BP during backward pass for antecedent parameters
tuning, as shown in Table 2.

Table 2. Two Passes In Hybrid Learning Procedure for Interval Type-2 FLS

 Forward
Pass

Backward
Pass

Antecedent
Parameters

Fixed BP

Consequent
Parameters

OLS Fixed

3.3 Adaptive OLS-BP Hybrid Learning Algorithm

The hybrid training method is based on the initial conditions of consequent parame-

ters: i
ly and i

ry . It presented as in [1]: Given N input-output training data pairs, the

hybrid training algorithm for E training epochs, should minimize the error function

() ()() ()[]222
1 tt

s
t yfe −= x . (5)

4 Application to Transfer Bar Surface Temperature Prediction

4.1 Hot Strip Mill

Because of the complexities and uncertainties involved in rolling operations, the
development of mathematical theories has been largely restricted to two-
dimensional models applicable to heat losing in flat rolling operations.

Orthogonal-Back Propagation Hybrid Learning Algorithm for Interval... 255

Fig. 1, shows a simplified diagram of a HSM, from the initial point of the process
at the reheat furnace entry to its end at the coilers.

Besides the mechanical, electrical and electronic equipment, a big potential for
ensuring good quality lies in the automation systems and the used control tech-
niques. The most critical process in the HSM occurs in the FM. There are several
mathematical model based systems for setting up the FM. There is a model-based
set-up system [6] that calculates the FM working references needed to obtain gauge,
width and temperature at the FM exit stands. It takes as inputs: FM exit target gage,
target width and target temperature, steel grade, hardness ratio from slab chemistry,
load distribution, gauge offset, temperature offset, roll diameters, load distribution,
transfer bar gauge, transfer bar width and transfer bar temperature entry.

Horizontal

Scale
Breaker

Finishing
Scale

Breaker

Reheat
Furnace

Holding
Table

Transfer

Roughing
Mill

Crop
Shear

Finishing
Mill

X-Ray
Gage

Run-out
Cooling

Downcoilers

Fig. 1. Typical hot strip mill

The errors in the gauge of the transfer bar are absorbed in the first two FM stands
and therefore have a little effect on the target exit gauge. It is very important for the
model to know the FM entry temperature accurately. A temperature error will
propagate through the entire FM.

4.2 Interval Type-2 Fuzzy Logic System Design

The architecture of the FLS was established in such way that parameters are con-
tinuously optimized. The number of rule-antecedents was fixed to two; one for the
RM exit surface temperature and the other for transfer bar head traveling time. Each
antecedent-input space was divided in five fuzzy sets, fixing the number of rules to
twenty five. Gaussian primary membership functions with uncertain means were
chosen for both, the antecedents and consequents. Each of the rules of the interval
type-2 NSFLS-2 is characterized by six antecedent membership function parameters
and two consequent parameters. Each input value has two standard deviation pa-
rameters: given ten parameters per rule.

The resulting interval type-2 FLS uses type-2 non-singleton fuzzification, maxi-
mum t-conorm, product t-norm, product implication and center-of-sets type-
reduction.

256 G. Mendez, L. Leduc

4.3 Noisy Input-Output Training Data Pairs

From an industrial HSM, noisy input-output pairs of three different coil types were
collected and used as training and checking data. The inputs were the noisy meas-
ured RM exit surface temperature and the measured RM exit to SB entry transfer bar
traveling time. The output was the noisy measured SB entry surface temperature.

4.4 Input Membership Function

The primary membership functions for each input of the interval type-2 NSFLS-2
was:

()

 −
−=

2'

2
1exp

k
k

X

kk
kX

xx
x

σ
µ . (6)

where: =k 1,2 (the number of type-2 non-singleton inputs), ()kX x
k

µ is centered at

'
kk xx = and

kXσ is the standard deviation whose values varies over an interval of

values []21 , kk σσ . The standard deviation of the RM exit surface temperature meas-

urement,
1Xσ , initially varies over [11.0, 14.0] Co interval, whereas the standard

deviation head end traveling time measurement,
2Xσ , initially varies over [1.41,

3.41] s interval. The uncertainty of the input data was modeled as non-stationary
additive noise using type-2 fuzzy sets.

4.5 Antecedent Membership Functions

The primary membership function for each antecedent was a Gaussian with uncer-
tain means as:

()

 −
−=

2

2
1exp

i
k

i
kk

k
i
k

mx
x

σ
µ . (7)

where []i
k

i
k

i
k mmm 21,∈ is the uncertain mean, i

kσ is the standard deviation, =k 1,2

(the number of antecedents) and =i 1,2,..25 (the number of M rules). The means of
the antecedent fuzzy sets were uniformly distributed over the entire input space.

11m and 12m are the upper and lower values of the uncertain mean, and 1σ is stan-

dard deviation of input ()1x . 22m and 22m are the upper and lower values of the

uncertain mean and 2σ is standard deviation of input ()2x .

Orthogonal-Back Propagation Hybrid Learning Algorithm for Interval... 257

4.6 Fuzzy Rule Base

The type-2 fuzzy rule base consists of a set of IF-THEN rules that represents the
model of the system. The interval non-singleton type-2 FLS have two inputs

2211 ,, XxandXx ∈∈ and one output Yy∈ , which have a corresponding rule base

size of M = 25 rules of the form:

,~~: 2211
iii FisxandFisxIFR iGisyTHEN ~ . (8)

where =i 1,2,…25, iF1
~ is the ()1x input type-2 fuzzy set, iF2

~ is ()2x input type-2

fuzzy set and iG~ is the consequent type-2 fuzzy set. These rules represent a fuzzy
relation between the input space 21 XX × and the output space Y , and it is com-

plete, consistent and continuous [16].

4.7 Consequent Membership Functions

The primary membership function for each consequent is a Gaussian with uncertain
means, as defined in (7). Because the center-of-sets type-reducer replaces each con-

sequent set iG~ by its centroid, then i
ly and i

ry are the consequent parameters.

Because only the input-output data training pairs () ()()11 : yx , () ()()22 : yx ,…,
() ()()NN yx : are available and there is no data information about the consequents,

the initial values for the centroid parameters i
ly and i

ry may be determined accord-

ing to the linguistic rules from human experts or be chosen arbitrarily in the output

space [16]. In this work the initial values of parameters i
ly and i

ry are such that the

corresponding membership functions uniformly cover the output space.

4.8 Results

An interval type-2 NSFLS-2 system was used to predict the transfer temperature.
For each of the two methods, BP and hybrid OLS-BP, we ran fifteen epoch compu-
tations; using eighty-seven input-output training data pairs, 250 parameters were
tuned. The performance evaluation for the learning methods was based on the
benchmarking root mean-squared error (RMSE) criteria [1]:

() () ()()[] 2

1 *22
1* ∑ = −−= n

k
k

ss fkY
n

RMSE x . (9)

where ()kY is the output training data from the model using ten check data pairs,

()*2sRMSE stands for ()BPRMSEs2 , and for ()BPOLSRMSEs −2 , and were ob-

tained when applied BP and hybrid OLS-BP learning methods to an interval type-2

258 G. Mendez, L. Leduc

NSFLS-2. Fig. 2, shows RMSE of the two used interval type-2 NSFLS-2 with fif-
teen epochs’ computations for the case of type A coils. It can be appreciated that
after four epochs, the hybrid OLS-BP has better performance than BP method.

5 Conclusion

In this paper we have developed an orthogonal-BP hybrid algorithm to train an in-
terval type-2 NSFLS-2 and used to predict HSM transfer bar temperature. The inter-
val type-2 NSFLS-2 antecedent membership functions and consequent centroids
successfully absorbed the uncertainty introduced by the training noisy data. The
uncertainty of the input data measurements was modeled as stationary additive noise
using type-2 fuzzy sets. The selected initial values of the antecedent and consequent
parameters can affect the results of the interval type-2 FLS predictions. BP and
OLS-BP methods were tested and parameters estimation has been demonstrated.
There is a substantial improvement in performance and stability of the hybrid
method over the only BP method. The hybrid OLS-BP achieves the better RMSE
performance as can be seen in the experimental results. It has been shown that the
proposed methodology can be applied in modeling and control of the steel coil tem-
perature. It has also been envisaged its application in gage, width and flatness pre-
diction.

5 10 15 20 25 30

1

2

3

4

5

6

7

8

9

10

Epoch

Fig. 2. Type-2 NSFLS-2 (*) RMSEs2 (BP) (o) RMSEs2 (OLS-BP)

R
M

SE

Orthogonal-Back Propagation Hybrid Learning Algorithm for Interval... 259

References

1. Mendel, J. M. : Uncertain Rule Based Fuzzy Logic Systems: Introduction and New Direc-
tions, Upper Saddle River, NJ, Prentice-Hall, (2001)

2. Jang, J. -S. R., Sun, C. -T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computa-
tional Approach to Learning and Machine Intelligence, Upper Saddle River, NJ: Prentice-
Hall, (1997)

3. Mendez, M., Cavazos, A., Leduc, L. , Soto, R.: Hot Strip Mill Temperature Prediction
Using Hybrid Learning Interval Singleton Type-2 FLS, Proceedings of the IASTED Inter-
national Conference on Modeling and Simulation, Palm Springs, February (2003), pp.
380-385

4. Mendez, M., Cavazos, A., Leduc, L. , Soto, R.: Modeling of a Hot Strip Mill Temperature
Using Hybrid Learning for Interval Type-1 and Type-2 Non-Singleton Type-2 FLS, Pro-
ceedings of the IASTED International Conference on Artificial Intelligence and Applica-
tions, Benalmádena, Spain, September (2003), pp. 529-533

5. Aguado, A.: Temas de Identificación y Control Adaptable, La Habana 10200 Cuba, Insti-
tuto de Cibernética, Matemáticas y Física, (2000)

6. GE Models, Users reference, Vol. 1, Roanoke VA, (1993)
7. Lee, D. Y., Cho, H. S.: Neural Network Approach to the Control of the Plate Width in Hot

Plate Mills, International Joint Conference on Neural Networks, (1999), Vol. 5, pp. 3391-
3396

8. Taylor, B. N., Kuyatt, C. E.: Guidelines for Evaluating and Expressing the Uncertainty of
NIST Measurement Results, September (1994), NIST Technical Note 1297

9. Wang, L-X.: Fuzzy Systems are Universal Approximators, Proceedings of the IEEE Conf.
On Fuzzy Systems, San Diego, (1992), pp. 1163-1170

10.Wang, L-X., Mendel, J. M.: Back-Propagation Fuzzy Systems as Nonlinear Dynamic
System Identifiers, Proceedings of the IEEE Conf. On Fuzzy Systems, San Diego, CA.
March (1992), pp. 1409-1418

11.Jang, J. -S. R., Sun, C. -T.: Neuro-Fuzzy Modeling and Control, The Proceedings of the
IEEEE, Vol. 3, Mach (1995), pp. 378-406

12.Liang, Q. J., Mendel, J. M.: Interval type-2 fuzzy logic systems: Theory and design,
Trans. Fuzzy Sist., Vol. 8, Oct. (2000), pp. 535-550

13.John, R.I.: Embedded Interval Valued Type-2 Fuzzy Sets, IEEE Trans. Fuzzy Sist., (2002)
14.Mendel, J. M., John, R.I.: Type-2 Fuzzy Sets Made Simple, IEEE Transactions on Fuzzy

Systems, Vol. 10, April (2002)
15.Mendel, J.M.: On the importance of interval sets in type-2 fuzzy logic systems, Proceed-

ings of Joint 9th IFSA World Congress and 20th NAFIPS International Conference, (2001)
16.Wang, L-X.: A Course in Fuzzy Systems and Control, Upper Saddle River, NJ: Prentice

Hall PTR, (1997)

260 G. Mendez, L. Leduc

Characterization and Interpretation of Classes Based
on Fuzzy Rules in ill-Structured Domains

Fernando Vázquez1, Juan Luis Díaz de León2

1 UPIICSA-IPN, Computer Science Dept., México, D.F.
fvazquez_t@hotmail.com

2 CIC-IPN, Computer Science Dept., México, D.F.
jdiaz@cic.ipn.mx

Abstract.
Nowadays, when a classification is given from a set of objects, it seems to be
necessary to make use of tools to assist users to interpret tasks, in order to
establish the semantic structure of the resultant classes from a given
classification. It is often enough for the user to build the classes automatically,
but he needs a sort of tool to help himself to understand the reason why such
classes were detected there. CIADEC is a computer system that implements the
methodology AUGERISD, which allows us to obtain the automatic
characterization and interpretation of conceptual descriptions, combining:
concepts, artificial intelligence techniques, inductive learning and statistics. A
system based on fuzzy rules to find out a characterization of the given classes
by an automatic form is described in this paper. A specific case applied to
Wastewater Treatment Plant (WWTP) shows the stages for this methodology.

1 Introduction

The aim of this paper is to present a methodology which combines statistical tools
through inductive learning, in such a way that it is the base of statistics analysis for
several (numeric) measurements. Such methodology can identify the characteristic
situations (classes) which can be found in the plant and it also produces a conceptual
description of them. Once they are identified and understood by the user, this typical
situations may be used afterwards to support the process of the decision making. This
decision making may be either automatic or not.

The process that was used helps us to know that the outflow water quality
(according to quality water standards) is really complex. On the other hand, due to
intrinsic features of wastewater and the consequences of a bad administration of the
plant, such process is complex and delicate [3].

Just to have a general idea of what is happening in the plant, we provide a very
brief description of the process: the water flows sequentially through three or four
stages which are commonly known as pretreatment, primary, secondary and advanced
treatment (see [4] for a detailed description of the process). Figure 1 depicts its
general structure.

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 261-270

Fig. 1. General structure of wastewater treatment plant.

 The paper is organized as follows: In section 2 the presentation of the Wastewater
Treatment Plant (WWTP) data is shown; in section 3 the methodology for the
characterization of the classes is described; in section 4 the methodology is applied to
a WWTP; in section 5 the interpretation of the results obtained of the automatic
characterization and interpretation of conceptual descriptions taken as references from
the partition of Klass+ from which four classes are displayed. Finally, in section 6 the
conclusions and future research are presented.

2 Presentation of the Wastewater Treatment Plant (WWTP) data

The set of qualitative and quantitative data analyzed in this research was taken from a
treatment plant on the Catalonian coast (Lloret city, Spain). It was made up of 218
observations taken from the same number of consecutive days. Some of the
observations were taken at different stages of the process, whereas others were taken
based on calculations from those. The first ones correspond to the daily average of
repeated measurements on a total of 63 attributes that were measured at various points
in the facility (AB: the entrance of the center, SP1: the outlet of the first settling tank,
B: in the biological reactor, SP3: in the third settling tank, AT: the treated water), as
well as a description of the plant’s state at the moment of measurement.

262 F. Vázquez, J. Díaz de León

3 Methodology for the characterization of the classes

The objective is to generate a fuzzy rules system from a set of data which has been
described by the attributes above mentioned; and to obtain a description that can be
easily understandable for the user, and which indicates particularities from each class

among the rest of them in a given partition { }ξccP ,......,1= .

3.1 Statistical description of the attributes

In this first stage, some classical descriptive techniques are used in order to identify
the behavior and nature of the data referring to the data matrix X . This stage is useful
to obtain preliminary information about the variability of the measurements and to
represent a multiple box-plot which will let us observe the relation between the
attributes and the classes, and it is especially useful to represent the difference among
clusters or classes.

3.2 The use of multiple box-plots as a graphic tool for the detection of
characterizing attributes.

As we have already pointed out, the multiple box-plots are excellent base for this
research, as a tool to view and compare the distribution of an attribute through all the
classes. In this representation, it is possible to identify the characterizing attributes
from classC , explained through the concept of proper value from a class C . It is
quite simple to graphically observe if the multiple box-plot of a certain class doesn’t
intersect others; in such a case, the attribute is fully characterizing1. Sometimes, it is
only a part of the box-plot that is not intersected; in this case it means that we have a
partial characterizing variable.

3.3 Study of classes interactions

In this process, it is utterly important to consider the attributes, in their natural
state, avoiding any arbitrary transformation about their nature that could change the
sense of the intersection. This stage consists on identifying all the intersections
occurring among the values of attributes and the different classes. We determine at
what point in the range of attributes these intersections are changing, thus allowing
identification of the different combinations existing among classes where the same
value of a certain variable or attribute can be found and, consequently, to let proper
values emerge (characterizing values). This would tell us whether they were fully or
partially characterized.

 3.4 Space discreteness of attributes

Exact intersections can be found with minimal computational cost, by simply
calculating the minimum and maximum values by variable and class, and ordering

1 Onwards, we will simple call characterizing variable of that class.

Characterization and Interpretation of Classes Based on Fuzzy Rules... 263

them. From this order, the discreteness of the variable is defined by a set of intervals

of variable length { }kkkk IIII 1221 ,....., −+= ξ so that k
k
ss DIU =−

=
12

1
ξ , in which the

unique values of a variable in all the classes can be identified.

 To extend these concepts, thus, if k
Cm and k

CM are the minimum and maximum of

the variable kX in the class PC ∈ , which have been observed in the descriptive of

the multiple box-plots, where }{min ikCi
k
C xm ∈= and }.{max ikCi

k
C xM ∈ Now, we

order them in ascendant form, and this is:

• Define kM like the set of all the minimums and maximums corresponding to

the variable kX , in all P classes, this is:

},....,,....,{ 11
k
c

k
c

k
c

k
c

k MMmmM ξξ= , being the ξ2)(=kMCard

• Ordering kM from minimum to maximum, a set is constructed kZ in the

following way: }2,...1;{ ξ== izZ k
i

k , so:

i. kk Mz min1 = and

ii. kk
i Mz min(= \ ξ2,....,2}),;{ =< iijz k

j

 Since }{ k
i

k zZ = is an ordered set, its elements have the following

 property: }21:|{ 1 ξ<<<= − jzzzZ k
j

K
J

K
J

K , this set is called cut points.

• From this ordered set, we build the intervals system of variable length kI in

the following form: }121:{ −≤≤= ξsII k
s

k , in which:

i. =kI1 [kk zz 21 ,]

ii. =k
sI (k

s
k
s zz 1, +], with 12,...,2 −= ξs

 A new categorizing variable is then defined as kI ; whose set of values is

}.,....,{ 121
kkk IID −= ξ

kI identifies all intersections among classes that kX defines,

representing a system of length intervals associated to such variable. Thus, were
ξ2 different cut points, then 12 −ξ intervals the most are generated

and 12)(−= ξkDCard , taking into account that ξ is the number of initial classes

of reference that we want to characterize.

 On the other hand, since kD is the domain of kX , kD represents the categorization

of itself, yet not arbitrary at all, it is also calculated immediately. Finally, it is

264 F. Vázquez, J. Díaz de León

necessary to observe that in order to construct kI it is not necessary to perform the

multiple box-plots anymore, even though it is still an excellent representation of what
it is being done.

 3.5 Construction of distribution table of classes versus intervals

From a system of intervals, a contingency table is set for a variable kX , as a matrix

A set of numbers in which each line represents an interval kI and each column
represents a class found in the previous stage, for the classes reference partition P.
Therefore, any given cell in this matrix indicates the number of elements in the

domain ,I whose values of kX are found in an interval represented by k
sI .

In general, for a given value of the variable kX , objects from different classes are

found.

3.6 Generating a fuzzy rules system),(PXR k

From this distribution from table B, a rule system is constructed for each non-null

cell scp . From this matrix, the following rules are generated: if CIX psck
sik ⎯→⎯∈ .

This way,),(PXR k can be used to recognize the class (or classes) belonging to a

certain day in which),....,,.....,(1 ikiKi xxxi = belongs to, according to its value

of kX .

3.7 Interpretation of resultant classes

The interpretation of the resultant classes tends to be utterly important to use the
generated knowledge as an aiming tool for the future decision taking. In fact, it has
been remarked that the validation of a classification has been considered as the degree
of interpretability and/or the utility of these, without any other criteria but that of a
specialist that looks at the resultant classes.

Having the conditioned table of distributions as a base to get the previously
described intervals in 3.4 from this section, any spare part I can be associated to its
degree of belonging to each class. This info gives us a graphic of diffused degrees of
belonging for each class and for each variable shown in figure 3. In the graphic, the

horizontal axe is common and represents the range kX . For every single class the

degree of belonging of values of k is represented according to the rules. The

scaffolding shape for such functions of belonging must be categorized from kX

in kI . Thus, given a value from kX , it is easily noticeable its relation to other classes.

Characterization and Interpretation of Classes Based on Fuzzy Rules... 265

4 Application of the methodology to WWTP data

In this section, the methodology AUGERISD [5] is applied to the data that were
gathered from the Wastewater Treatment Plant with Klass+ [1] being partitioned into
four classes. We applied the methodology automated through system CIADEC [6] to
identify the relevant characteristics of the reference partition, having a fuzzy rules
system obtained that will allow us to get the characterization and interpretation of the
conceptual descriptions for the resulting classes of such reference partition,
considering the analysis of all the attributes in such a way.

5 Generation of Interpretations

In [1] and [2] a first approach for an efficient algorithm which generates automatic
interpretations of the classes is introduced. In this research, the main work is about
the interpretation of the classes on the basis of categorical attributes. In this
section, we are interested in the use of numerical attributes for interpreting classes.
The real application we presented here is especially indicated for this goal, since
categorical attributes are not presented in the data matrix at all and only numerical
measurements are useful to describe data.

From this automated methodology we obtain the conditioned distributions to each
interval (see Table 1). The table, which has been mentioned above, gives us the
percentage of elements of certain interval in each class, obtaining a reduced fuzzy
rules system (see figure 2).

Table 1. Conditional Distribution Table of Attribute ABQ −

Intervals Classes
 C1 C2 C3 C4

[4910, 5881] 0.94 0.00 0.06 0.00
(5881, 6277] 0.85 0.07 0.08 0.00

(6277, 13454] 0.41 0.23 0.36 0.00
(13454, 13563] 0.00 0.34 0.33 0.33

(13563, 13563] 0.00 0.00 0.00 0.00
(13563, 14375] 0.00 0.50 0.50 0.00
(14375, 23394] 0.00 1.0 0.00 0.00

 Having any of them, since it is based on the conditioned distributions table to the
intervals, they can be associated with an object (day) that is called: a belonging degree
for each class. This idea gives place to a graph of a belonging fuzzy degree for each
class and for each attribute (see figure 3).

266 F. Vázquez, J. Díaz de León

[]

(]

(]

(]

(]

(] 223394,14375:

214375,13563:

213563,13454:

213454,6277:

16277,5881:

15881,4910:

0.1
,7

5.0
,6

34.0
,4

41.0
,3

85.0
,2

94.0
,1

Cxr

Cxr

Cxr

Cxr

Cxr

Cxr

iABQ

iABQ

iABQ

iABQ

iABQ

iABQ

⎯ →⎯∈

⎯ →⎯∈

⎯⎯ →⎯∈

⎯⎯ →⎯∈

⎯⎯ →⎯∈

⎯⎯ →⎯∈

−

−

−

−

−

−

Fig. 2. Fuzzy Rules Reduced System of Attribute ABQ −

In this way, from a system with a method of creation of linguistic labels we
automatically generate conceptual descriptions for these classes.

Using this methodology, the following interpretations are produced. The opinion of
the experts is also included in the discussion below, as they confirmed the
understandability of the discovered classes.

Class 1:
The output water is clean. The input water is low dirty (values are low in almost all

the attributes). Experts identified this class with the class of those days with very good
plant performance, as a consequence of the good conditions, even ammonium is
reduced.

Class 2:
High wastewater inflow. The water which comes in is medium dirty (intermediate

values in almost all the attributes: suspended solid total, chemical organic matter,
biodegradable organic matter, etc). Settler is making high effect (levels of suspended
and volatile suspended solid are significantly reduced at the primary treatment). From
the expert point of view, this class is interpreted as the class of days with general good
performance, but in which punctual problems can produce some isolated parameter
with high values.

Class 3:
The water that comes in is very dirty. The output water with intermediate measures

all the attributes. Nonetheless, the performance of the plant is not so good. This class
contains some days in which isolated control parameters overcome the permitted
values.
 Experts identified this class to the class of those days with organic material
overloading on summer days with optimal WWTP-operation.

Characterization and Interpretation of Classes Based on Fuzzy Rules... 267

Fig. 3. Attribute Graphic ABQ −

Class 4:
High levels of chlorine and conductivity. From the expert point of view, this class

is interpreted as the class of days with chlorine over amount.

6 Conclusions and Future Work

This work constitutes a positive experience in terms of establishing a formal
methodology to automatically obtain conceptual interpretations of the classes, on the
basis of numerical attributes used to describe objects (days in this case).

From a very small and partial set of rules, the system created a new level of
abstraction that catches the nature of a Wastewater Treatment Plant for the given set
of data (noisy, incomplete and heterogeneous), producing a set of identified classes, as
well as their conceptual interpretation, which was directly interpreted by the experts
on this matter.

In the future, it is our intention to explore the series of time of the behavior of the
plots in their variables.

268 F. Vázquez, J. Díaz de León

Acknowledgements
This research has been partially financed by COFAA and IPN, México.

References

1. Gibert K. In L’us de la informació simbólica en la automatizació del tractament estadístic
de dominis poc estructurats. Ph D. Thesis, UPC, BCNA, 1994.

2. Gibert K., Aluja T. and Cortés. Knowledge discovery with clustering based on rules,
interpreting results

3. Gimeno J.M., Béjar I., Sànchez-Marrè and Cortés U. In “Discovering and modelling
process change: An application to industrial processes”. Practical Applications of Data
Mining and Knowledge Discovery. 1997.4. Michalewicz, Z.: Genetic Algorithms + Data
Structures = Evolution Programs. 3rd edn. Springer-Verlag, Berlin Heidelberg New York
(1996)

4. Metcalf and Eddy Inc., In Wastewater engineering: treatment/disposal/reuse. McGraw-Hill,
1991.

5. Vázquez F., Gibert K. In Automatic Generation of Fuzzy Rules in ill-Structured Domanis
with Numerical Variables, publisher: UPC, LSI, Report num: LSI-01-51-R. Barcelona,
España. 2001. E-mail: http://www.lsi.upc.es.

6. Vázquez F., Gibert K. In Implementation of the methodology “Automatic Characterization
and Interpretation of Conceptual Descriptions in ill-Structured Domains using Numerical
Variables”, publisher: UPC, LSI, Report num: LSI-02-28-R. Barcelona, Spain. 2002. E-
mail: http://www.lsi.upc.es.

7. Rodas J., Alvarado G. and Vázquez F. Using the KDSM methodology for knowledge
discovery from a labor domain. (SNPD2005). Towson University. Towson, Maryland,
USA. May 2005.

Characterization and Interpretation of Classes Based on Fuzzy Rules... 269

Differential Evolution Algorithms to Solve Optimal
Control Problems Efficiently

I.L. López-Cruz; A. Rojano-Aguilar

Postgrado en Ingeniería Agrícola y Uso Integral del Agua
Universidad Autónoma Chapingo

Chapingo, México
e-mail:ilopez@correo.chapingo.mx

Abstract. Optimal control of multimodal and singular problems of bioreactors has received
considerable attention recently. Three main approaches have been attempted: deterministic
methods like Iterative Dynamic Programming, stochastic methods like Adaptive Stochastic
algorithms, and Evolutionary Algorithms. The aim of this research is to demonstrate that new
evolutionary algorithms called generically Differential Evolution (DE) algorithms are efficient
in solving both multimodal, and singular optimal control problems especially when a relatively
greater number of variables (50-100) have to be optimized. DE algorithms are simple and
efficient evolutionary methods when are compared to other evolutionary methods regarding the
number of function evaluations to converge to a solution. It is shown that besides he three main
operators of DE: mutation, crossover and selection, a filter operator is added in order to obtain
smoother optimal trajectories of singular optimal control problems.

1 Introduction

During the last decade interest on the application of global optimization methods in
optimal control has significantly increased. Evolutionary Algorithms are stochastic
optimization methods that have shown several advantages as global optimization
methods. They have been applied in the past basically to solve static optimization
problems and only rarely to solve multimodal optimal control problems. It is well
known that optimal control problems with singular arcs are very hard to solve by us-
ing the Pontryagin minimum principle [1], [2]. Singular optimal control problems are
frequently found in the optimization of bioreactors [3], [4] and likely also in other
biosystems [5]. Also multimodal optimal control problems are frequently found in op-
timization of bioreactors [6]. Luus [6,7] has applied Iterative Dynamic Programming
(IDP), which can be considered as another global optimization method, to solve mul-
timodal and also singular control problems. Tholudur and Ramirez [8], who also used
IDP, found highly oscillatory behavior of optimal control trajectories in solving sin-
gular optimal control problems. Therefore, they proposed two filters in order to calcu-
late smoother optimal trajectories. Recently, Roubos et al. [5] suggested two
smoother evolutionary operators for a Genetic Algorithm with floating-point repre-
sentation of the individuals and applied this approach to calculate solutions for two
fed-batch bioreactors.

In spite of its reliability as a global optimization method, IDP is rather complex with
several algorithm parameters, which require an expensive tuning, before the applica-
tion of the algorithm to a new problem. Since many experiments are necessary IDP
becomes deceptively inefficient recalling that the computation time is critical in solv-

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 271-280

ing optimal control problems. In dynamic optimization each evaluation of the cost
function means running a long simulation (integration) of the dynamic model of the
process. Theoretical and empirical results [9] have shown that Evolutionary Algo-
rithms (like those based in Genetic Algorithms) that use low mutation rates for muta-
tion and high probability for crossover are not good candidates to solve optimal con-
trol problems efficiently since they may require highly number of function
evaluations when many variables are optimized or these variables are correlated.
Therefore, there is a necessity of developing more efficient global optimization algo-
rithms for solving optimal control problems, in general, and multimodal and singular
optimal control problems, in particular.

Lately, a new family of evolutionary algorithms named Differential Evolution (DE)
has been proposed [10, 11] which is not only simple but also remarkably efficient
compared to other Evolutionary Algorithms, Simulated Annealing and Stochastic Dif-
ferential equations. Recently, results were have presented that show DE are one of the
most efficient evolutionary algorithms to solve optimal control problems efficiently
[12, 13]. The present work illustrates that indeed DE algorithms are good candidates
to solve multimodal optimal control problems. Also modified DE algorithms are
evaluated in solving singular optimal control problems. The new operator is simple
and does not add any additional algorithm parameter. The so-called median filter op-
erator basically consists of a sliding window such as each control is replaced with the
median of a few neighboring controls. The proposed operator is implemented on the
DE/rand/bin/1 algorithm, and tested on solving a dynamic optimization problem of a
fed-batch bioreactor. In this work efficiency of algorithms is measured by counting
the number of function evaluations required to solve a problem, which is a machine
independent criterion. A comparison of the DE/rand/bin/1 algorithm performance
with and without the smoother operator is presented to illustrate the advantages of the
proposed modified Differential Evolution algorithm.

2 The Optimal Control Problem

A continuous-time optimal control problem [12] implies to find an optimal control

, which causes the system)(* tu

)),(),(((ttutxfx =

)(* tx

•

tf

, 00)(xtx = (1)

to follow an admissible trajectory that optimizes the performance measure
given by the functional :

∫+= ff dtttutxLttxJ
0

)),(),(()),((φ

Ru∈

. (2)

where denotes the states of the system and denotes a control vector.
In addition the controls are constrained α . The final time t is fixed. As
the Hamiltonian function:

nRx∈ m

β≤≤)(tu f

)),(),(()()(ttutxfttH Tλ= . (3)

272 I. López, A. Rojano

is linear with respect to the controls, the optimal control problem becomes singular
[13]. Singular optimal control problems are difficult to solve by classical methods and
direct methods seem to be a promising approach. To apply a direct optimization
method a parameterization of the controls is necessary, for instance piecewise con-
stant control can be applied

)()(ktutu = , ,),[1+∈ kk ttt 1,...1,0 −= Nk (4)

where N is the number of sub-intervals for the time interval [. In this way a vec-

tor of parameters u is defined and the value that optimizes the
original performance index (2) can be obtained by parameter optimization methods or
solving a Non-Linear Programming (NLP) optimization problem. The numerical solu-
tion of these problems is challenging due to the non-linear and discontinuous dynam-
ics. Likely, there is not a unique global solution. Standard gradient-based algorithms
are basically local search methods; they will converge to a local solution. In order to
surmount these difficulties global optimization methods must be used in order to en-
sure proper convergence to the global optimum.

],0 ftt

],...,,[~
121

T
N

TT uuu −=

 3 Differential Evolution Algorithms

A differential evolution algorithm is as follows:
Generate a population () of solutions.)0(P
Evaluate each solution.
g=1;
while (convergence is not reached)

µ for i=1 to
 Apply differential mutation.
 Execute differential crossover.

Clip the new solution if necessary.
Evaluate the new solution.
Apply differential selection.

 end
 g=g+1;
end
Firstly, a population of floating-point vectors u is generated ran-
domly from the domain of the variables to be optimized, where u and
denotes the population size. Next, each vector is evaluated by calculating its associ-
ated cost function (eqn. 2), i . Notice that the evaluation of each solution im-
plies to carry out a numerical integration of the dynamic model (1). After that, a loop
begins in which the evolutionary operators: differential mutation, differential cross-
over and selection are applied to the population (), where denotes a genera-
tion number. Differential Evolution operators are quite different than those frequently
found in other evolutionary algorithms. In DE, the differential mutation operator con-
sists of the generation of mutated vectors according to the equation:

)0(P

µ

µ,...,1, =ii
r

=r

) g

],...,[1 duu µ

µ,...,1=

(gP

Differential Evolution Algorithms to Solve Optimal Control Problems Efficiently 273

)(
321 rrri uuFuv rrrr −⋅+= , i . µ,...,2,1= (5)

where the random indices are mutually different and also different
from the index i. is a real constant parameter that affects the differential
variation between two vectors. Greater values of and/or the population size ()
tend to increase the global search capabilities of the algorithm because more areas of
the search space are explored.

],...,2,1[,, 321 µ∈rrr
]2,0[∈F

F µ

The crossover operator combines the previously mutated vector
with a so-called target vector (a parent solution from the old population)

 to generate a so-called trial vector according
to:

],...,,[21 diiii vvvv =r

],..., dii u′],...,,[21 diiii uuuu =r ,[21ii uuu ′′=′r

=′
ji

ji
ji u

v
u

randb

if
if

)(j

))((
))((

CRjrandb
CRjrandb

>
≤

]1,0[∈

and
or

)(
)(

irnbrj
irnbrj

≠
=

; ;,...,2,1 dj = µ,...,2,1=i (6)

where is the j-th evaluation of a uniform random number generator,

 is a randomly chosen index. CR is the crossover constant, a
parameter that increases the diversity of the individuals in the population. Greater
values of CR give rise to a child vector () more similar to the mutated vector ().
Therefore, the speed of convergence of the algorithm is increased. As can be seen
from equation (6), each member of the population plays once the role of a target vec-
tor. It is important to realize that even when CR , equation (6) ensures that parent
and child vectors differ by at least one gene (variable). The three algorithm parame-
ters that steer the search of the algorithm, the population size (), the crossover con-
stant () and differential variation factor () remain constant during an optimiza-
tion.

d,...,2,1)∈

CR

irnbr(]1,0[∈

0=

iu ′r ivr

µ
F

The selection operator compares the cost function value of the target vector with
that of the associated trial vector , and the best vector of these two be-
comes a member of the population for the next generation. That is,

iur

iu ′r µ,...,2,1=i

if φ then u))(())((gugu ii
rr φ<′

r
)(:)1(gug ii ′=+ rr

else ;)(:)1(gugu ii
r=+ µ,...,1=i

Several DE algorithms can be identified according to their type of mutation (),
number of difference vectors () and type of crossover (). Commonly, the nota-
tion is used to name a DE algorithm. Where , means the way the vec-
tor to be mutated is chosen, indicates the number of difference vectors is used,
and is the type of differential crossover implemented. For instance, the previously
described algorithm is known as the , which means than the to be
mutated vector is selected randomly, only one difference vector is calculated and the
scheme of crossover is binomial. In general ,

, and .

x

}

y

y

exp}

z
x

,

zyxDE ///

z

},...,2,1{ n

binrandDE /1//

{x∈ , randtocurrentbestrand −−
y∈ ,{binz∈

274 I. López, A. Rojano

Extensions of DE and a smoother operator

Since originally DE algorithms were designed to solve unconstrained static optimiza-
tion problems, a modification is required in order to deal with constraints for the con-
trols. A clipping technique has been introduced to guarantee that only feasible trial
vectors are generated after the mutation and crossover operators:

=′
j

j
ji gu

α
β

)(

β

if
if

jji

jji

gu
gu

α
β

<′
>′

)(
)(

; µ,...,2,1;,...,2,1 == idj (7)

where and represent the lower and upper boundaries of the control variables,
respectively. A smoother operator is defined according to [8] as follows:

jα j

),,...,,...,,(,,1,,1,, iFjiFjijiFjiFjij uuuuumedianu +−++−−=

FNFFj −++= ,...,2,1 ; i µ,...,2,1=

(8)

where is the filtering radius. Both Differential Evolution algorithms and its
extensions were programmed as an m-file in the Matlab environment.

,..2,1=F

 4 Multimodal Optimal Control of Bifunctional Catalyst Blend

A chemical process converting methylcyclopentane to benzene in a tubular reactor is
modeled by a set of seven differential equations:

111 xkx −=
•

 . (9)

54232112)(xkxkkxkx ++−=
•

•

 . (10)

223 xkx = . (11)

55464 xkxkx +−=
•

 . (12)

710675985446235)(xkxkxkkkkxkxkx +++++−+=
•

•

 . (13)

67586 xkxkx −=

•

 . (14)

710597 xkxkx −= . (15)

where are the mole fractions of the chemical species, and the rate con-
stants () are cubic functions of the catalyst blend :

7,...,1, =ixi

ik)(tu
3

4
2

321 ucucucck iiiii +++= ; i 10,...,1= (16)

The values of the coefficients are given in [7]. The upper and lower bounds on the

mass fraction of the hydrogenation catalyst are: , and the initial vector
ijc

9.0)(6.0 ≤≤ tu

Differential Evolution Algorithms to Solve Optimal Control Problems Efficiently 275

of mole fraction is . This is a continuous process op-
erated in steady state, so that ‘time’ in equations (9)-(16) is equivalent to travel time
and thus length along the reactor. The optimal control problem is to find the catalyst
blend along the length of the reactor, which in the control problem formulation is con-
sidered at times where the final effective residence time

 such that the concentration in the reactor is maximized:

. Esposito and Floudas [16] found recently 300 local minima of this
problem, so this is a challenging multimodal optimal control problem.

[T0000001]0[=x

ftt ≤≤0

]

molhgt f /2000 ⋅=
3

7 10)(×= ftxJ

u
x
xxxgx

5

1
1211)(−−=

•

u
x
xxgx

5

2
322 −=

•

u
x
xxgx

5

3
333 −=

•

u
x

xmxggx
5

4
3344

−
−−=

•

ux =
•

5

3

3

g
g

1 12.0
75.4

g = g

71.175.58 2
24 += gg

1x

2x

4x
)(t

2g

4g

)(1 f xtxJ =)(ft

5 Singular Optimal Control of the Park-Ramirez Bioreactor

One optimal control problem that has a singular optimal solution was used to test the
modified DE algorithm [8]. In this problem the goal is to maximize the production of
protein. The system is described by the following differential equations:

 . (17)

 (18)

 . (19)

 . (20)

 . (21)

where
+

,
)5.62)(4.0(

88.21

44

4
2 ++
=

xx
x ,

4

44
3 10.0

)01.5exp(
x

xxg
+
−

= ,

.
The state variable represents amount of secreted protein [unit culture volume L-1],

 denotes the total protein amount [unit culture volume L-1], means culture cell
density [g L

3x

5x-1], culture glucose concentration [g L-1], and the culture volume
[L]. The control u represents the rate at which glucose is fed into the reactor [Lh-

1]. The secretion rate constant is given by , the protein expression rate is calculated
by , the specific growth rate by and the biomass to glucose yield is estimated
by . The optimal control problem consists in the maximization of the amount of
the secreted protein in a given time t . Therefore the performance index is

given by . The control input satisfying the constraints
and the system initial conditions are . The dynamic model
(eqns. 10-14) was programmed in the Matlab-Simulink environment. A C-MEX file

1g

15=

)0(

3g

hf

[=x
5 5.2)(0 ≤≤ tu

]0.1,0.5,0.1,0,0

276 I. López, A. Rojano

containing the dynamic equations was implemented in order to speed up the simula-
tions. A variable step size Runge-Kutta integration method with a relative tolerance of

 was applied. The DE algorithm was initialized randomly from the control’s
domain. Since DE algorithms are probabilistic methods the optimizations were re-
peated 10 times. The problem was solved for two number of variables N=50 and
N=100.

81 −e

DE
/DE
/DE

DE
DE

/DE
DE /

/DE
DE

/DE

6 Results and Discussion

Multimodal optimal control problem
Ten differential evolution algorithms were evaluated in solving the multimodal opti-
mal control problem aforementioned. Table 1 shows main results. NP is the popula-
tion size used in each algorithm.

Table 1. Evaluation of several DE algorithms in solving a multimodal continuous-time optimal
control problem

DE CR F NP Kp F.E. STD J* STD
binbest /2// 0.0 0.9 15 - 2529 262.98 10.0942 0.0
exp/2/best 0.0 0.9 20 - 3426 388.85 10.0942 0.0
exp/1/rand 0.0 0.9 15 - 2289 295.31 10.0942 0.0
binrand /1// 0.0 0.9 20 - 3044 351.22 10.0942 4e-5
binrand /2// 0.0 0.9 20 - 3872 332.69 10.0942 4e-5
exp/2/rand 0.0 0.9 20 - 3882 440.44 10.0942 0.0

binrandtocurr /1/−− 0.0 0.9 15 1 2100 346.04 10.0942 5e-5
exp/1/randtocurr −− 0.0 0.9 15 1 2257 202.63 10.0942 0.0

binbest /1// 0.0 0.9 25 - 3112 324.30 10.0942 0.0
exp/1/best 0.0 1.0 25 - 3245 413.11 10.0941 2e-4

Results of table 1 represent the average of 10 runs regarding number of function
evaluations (FE) and the objective function (J*). A measure of population conver-
gence was defined as a difference between worst and best solution satisfied a given
value. In this case the accuracy required was 1e-3. Clearly all DE algorithms found

Differential Evolution Algorithms to Solve Optimal Control Problems Efficiently 277
Figure 1. Optimal control trajectory of multimodal probem.

the global optimum with the given values of the parameters. Notice that because of
the high multimodality of the problem the mutation parameter is greater and in some
cases the population size was increased more than two times the size of the number of
variables to be optimized. Price [11], suggests populations sizes between and
but our results show that even with lower sizes DE algorithms can solve multimodal
optimal control problems. Figure 1 shows the optimal control trajectory found by DE
algorithms.

n2 n20

Singular optimal control of Park-Ramirez bioreactor
Since DE algorithms are very robust it is easy to determine a set of parameters that
provides an acceptable solution. Furthermore, the solved optimal control problem has
likely only one solution so it was found that an almost standard setting worked out
properly. In contrast to the commonly applied approach, which is based on the use of
a too large population size, in our situation population size was chosen equal to the
dimension of the optimization (N) problem. Since we did not expect a multimodal
problem then the mutation constant was kept reasonably small. However, the cross-
over parameter was substantially increased in order to speed up the convergence of
the algorithms. Table 2 and table 3 show the parameters settings (crossover constant,
mutation parameter and population size) of applied on optimal con-
trol problem using the Park-Ramirez bioreactor. Also the main results of the compari-
son regarding number of generations required, the number of function evaluations
needed and the cost function value are presented.

binrandDE /1//

Table 2. Results obtained by DE and smoother DE in solving a singular optimal control
problem (Number of variables N=50)

 CR F µ Generations Function Evaluations J*

DE 0.9 0.6 50 5192 259600 32.41
SDE 0.9 0.6 50 932 46600 32.41

Table 3. Results obtained by DE and smoother DE in solving a singular optimal control
problem (Number of variables N=100).

 CR F µ Generations Function Evaluations J*

DE 0.9 0.6 100 8251 825100 32.47
SDE 0.9 0.6 100 436 43600 32.47
Figure 2 and figure 3 show the optimal control trajectories calculated by both the DE
and the smoother DE algorithms for N=50 and N=100 number of variables. In both
cases the trajectories resulted on the same cost function value. Clearly, the trajectory
generated by DE algorithm with a smoother operator has less oscillation than that ob-
tained by DE. The oscillation of optimal control trajectory obtained by DE was as the
control was parameterized more variables (N=100). A comparison of figures 2 and 3
makes apparent that only small differences can be distinguished between the optimal
control trajectories calculated by the smother DE algorithm. The performance index
values obtained for both situations N=50 and N=100 were exactly the same reported
by [8] using Iterative Dynamic Programming. The improvement in efficiency accord-
ing to the number of function evaluations as N=50 is used was 6 % in case of N=100

278 I. López, A. Rojano

0 5 10 15
0

0.5

1

1.5

2

2.5

Time [hours]

N
u

tr
ie

n
t f

e
e

d
 r

a
te

 [l
ite

rs
]

SDE
DE

J*=32.41

this was 19%. Similar percentages were obtained taking into consideration the num-
ber of generations. The explanation of this fact could be the increment of population
size to individuals as N=100. But also it is clear that avoiding the oscillation
of the optimal trajectories speed up the convergence of the DE algorithm. Therefore,
it is clear that using the smoother operator together with other DE operators, the per-
formance of DE algorithms is improved considerably and also higher oscillation of
optimal control trajectories can be avoided.

100=µ

Figure 2. Optimal control trajectory of DE without and
with smoother operator (N=50).

7 Conclusions

A highly multimodal optimal control problem was used to test the performance of
several differential evolution algorithms. Results show that DE algorithms are good
candidates to solve this class of problems since even using small populations they can
find the global optimum trajectory. DE algorithms are robust and their parameters are
chosen in a straightforward way. A smoother operator was proposed and evaluated in

0 5 10 15
0

0.5

1

1.5

2

2.5

time [hours]

N
u

tr
ie

d
fe

e
d

 r
a

te
 [

lit
e

rs
]

DE
SDE

J*= 32.47

Figure 3. Optimal control trajectory without and
with smoother operator N=100.

Differential Evolution Algorithms to Solve Optimal Control Problems Efficiently 279

solving singular optimal control problems by Differential Evolution algorithms. The
evaluation of the smoother operator on a dynamic optimization problem of a nonlin-
ear bioreactor showed that the operator not only removed the oscillation of the opti-
mal control trajectory, but also it speed up the convergence of the of a DE algorithm.

References

1. Park, S., Ramirez, W. F.: Optimal production of secreted protein in fed-batch reac-
 tors. AIChE Journal 34 (9) (1988) 1550-1558.
2. Park, S., Ramirez, W. F.: Dynamics of foreign protein secretion from Saccharomy-
 ces cerevisiae. Biotechnology and Bioengineering 33 (1989) 272-281.
3. Menawat, A., Mutharasan, R., Coughanowr, D. R.: Singular optimal control strat-
 egy for a fed-batch bioreactor: numerical approach. AIChE Journal 33 (5) (1987)
 776-783.
4. Roubus, J.A., de Gooijer, C.D., van Straten, G., van Boxtel, A.J.B.: Comparison of
 optimization methods for fed-batch cultures of hybridoma cells, Bioproc. Eng.17
 (1997) 99-102.
5. Roubos, J.A., van Straten, G., van Boxtel, A.J.B.. An evolutionary strategy for fed-
 batch bioreactor optimization:concepts and performance, Journal of Biotechnology
 67 (1999) 173-187.
6. Luus, R.. On the application of Iterative Dynamic Programming to Singular Opti-
 mal Control problems. IEEE, Transactions on Automatic Control 37 (11) (1992)
7. Luus, R. Iterative Dynamic Programming. Chapman & Hall/CRC., Boca Raton,
 (2000).
8.Tholudur, A., Ramirez, W.F.: Obtaining smoother singular arc policies using a
 modified iterative dynamic programming algorithm. International Journal of Control,
 68(5) (1997)1115-1128.
9. Salomon, R.: Re-evaluating genetic algorithm performance under coordinate rota-
 tion of benchmark functions. A survey of some theoretical and practical aspects
 of genetic algorithms. BioSystems 39 (1996) 263-278.
10. Storn, R., Price, K.: Differential Evolution- a simple and efficient heuristic for
 global optimization over continuous spaces. Journal of Global Optimization 11
 (1997) 341-359.
11. Price K., V.: An Introduction to Differential Evolution. In Corne, D., Dorigo, M.,
 and Glover, F. (eds.). New Ideas in Optimization. Mc Graw Hill (1999).
12.Lopez-Cruz, I.L. van Willigenburg, G., van Straten G. 2003. Efficient evolutionary
 algorithms for multimodal optimal control problems. Journal of applied soft
 computing 3(2): 97-122.
13.Moles, C.G., Banga, J.R., Keller, K. 2004. Solving nonconvex climate control
 problems: pitfalls and algorithm performances. Journal of applied soft
 computing 5:35-44.
14. Kirk, D.E.: Optimal control theory. An introduction. Dover Publications, Inc. New
 York. (1998).
15. Bryson, A.E.: Dynamic Optimization. Addison-Wesley. (1999).
16. Esposito W.R., Floudas, Ch.A.: Deterministic global optimisation in nonlinear op-
 timal control problems. Journal of global optimisation 17 (2000) 97-126.

280 I. López, A. Rojano

Author Index
Índice de autores

Arai, Masahiko 23
Ayala Ramirez, Victor 111
Babaian, Tamara 65
Barrón, Ricardo 21,131,141
Belaid, Benhamou 45
Boughaci, Dalila 5
Brena, Ramon 9
Carlin, Alan 5
Castiello, Ciro 53
Chandra, Priti 5
Cruz, Benjamín 21
De la Calleja Manzanedo, René 35
Díaz de León, Juan Luis 261
Fakih, Adel 163
Fanelli, Anna Maria 153
Feng, Boqin 195
Ferrández, Oscar 219
González Mendoza, Miguel 175
Guillen, Rocio 229
Habiba, Drias 45
Hannon, Charles 239
Hernández Gress, Neil 175
Hui, Zhang 13
Kim, Inkyeom 185
Kozareva, Zornitsa 219
Kuri Morales, Angel 207
Kuroiwa, Shingo 3
Leduc, Luis A. 251
Li, Bo 195
Liu, Qiong 3
Longoria Mendez, Cruz A. 111
Lopez Cruz, Irineo L. 271
Lu, Jun 195
Lu, Xin 3
Marin, Cesar 79
Martínez Ríos, Félix Orlando 89
Mejía Guevara, Iván 207
Mendez, Gerardo M. 251
Montoyo, Andrés 219
Mora Vargas, Jaime 175
Muñoz, Rafael 219
Pujari, Arun K. 55

Ren, Fuji 3
Rodríguez Lucatero, Carlos 89
Rojano Aguilar, Abraham 271
Saade, Jean 163
Sanchez Yanez, Raul E. 111
Schmolze, James G. 65
SiKun, Li 13
Sossa, Humberto 121,131,141
Terashima Marín, Hugo 35
Torres, Benjamín 141
Umre, Ashish 99
Valenzuela Rendón, Manuel 35
Vázquez, Fernando 261
Vázquez, Roberto A. 131
Wakeman, Ian 99
Yun, Minyoung 185

Editorial Board of the Volume
Comité editorial del volumen

Ajith Abraham
José Luis Aguirre
Juan Manuel Ahuactzin
Inés Arana
Gustavo Arroyo Figueroa
Víctor Ayala Ramírez
Ruth Aylett
Antonio Bahamonde
Soumya Banerjee
Olivia Barrón Cano
Ildar Batyrshin
Ricardo Beausoleil Delgado
Bedrich Benes
Ramón F. Brena
Carlos A. Brizuela
Paul Brna
Wolfram Burgard
Osvaldo Cairó
Nicoletta Calzolari
Francisco Cantú Ortíz
Maria Carolina Monard
Oscar Castillo López
Edgar Chávez
Yuehui Chen
Carlos A. Coello Coello
Simon Colton
Santiago E. Conant Pablos
Ulises Cortés
Carlos Cotta Porras
Nareli Cruz Cortés
Nicandro Cruz Ramírez
Victor de la Cueva
Antonio D'Angelo
Louise Dennis
Alexandre Dikovsky
Juergen Dix
Marco Dorigo
Armin Fiedler
Bob Fisher
Juan J. Flores
Olac Fuentes
Alexander Gelbukh (co Chair)
Eduardo Gómez Ramírez

Andrés Gómez de Silva
Jose A. Gamez Martin
Matjaz Gams
Leonardo Garrido Luna
Luis Eduardo Garza Castañón
José Luis Gordillo
Crina Grosan
Neil Hernández Gress
Arturo Hernández
Brahim Hnich
Jesse Hoey
Johan van Horebeek
Dieter Hutter
Pablo H. Ibarguengoytia G.
Bruno Jammes
Leo Joskowicz
Mario Köppen
Ingrid Kirschning
Zeynep Kiziltan
Ryszard Klempous
Angel Kuri Morales
Ramón López de Mantaras
Pedro Larrañaga
Christian Lemaître León
Eugene Levner
Jim Little
Vladimír Mařík
Jacek Malec
Toni Mancini
Pierre Marquis
Carlos Martín Vide
José Francisco Martínez Trinidad
Horacio Martinez Alfaro
Oscar Mayora
René Mayorga
Efrén Mezura Montes
Chilukuri K. Mohan
Raú Monroy (co Chair)
Guillermo Morales Luna
Eduardo Morales Manzanares
Rafael Morales
Rafael Murrieta Cid
Juan Arturo Nolazco Flores

Gabriela Ochoa Meier
Mauricio Osorio Galindo
Andrés Pérez Uribe
Manuel Palomar
Luis Alberto Pineda
Andre Ponce de Leon F. de Carvalho
David Poole
Bhanu Prasad
Jorge Adolfo Ramírez Uresti
Fernando Ramos
Carlos Alberto Reyes García
Abdennour El Rhalibi
Maria Cristina Riff
Roger Z. Rios
Dave Robertson
Horacio Rodríguez
Riccardo Rosati
Isaac Rudomín
Alessandro Saffiotti
Gildardo Sánchez
Alberto Sanfeliú Cortés
Andrea Schaerf
Thomas Schiex

Leonid Sheremetov
Grigori Sidorov
Carles Sierra
Alexander V. Smirnov
Maarten van Someren
Juan Humberto Sossa Azuela
Rogelio Soto
Thomas Stuetzle
Luis Enrique Sucar Succar
Ricardo Swain Oropeza
Hugo Terashima
Demetri Terzopoulos
Manuel Valenzuela
Juan Vargas
Felisa Verdejo
Manuel Vilares Ferro
Toby Walsh
Alfredo Weitzenfeld
Nirmalie Wiratunga
Franz Wotawa
Kaori Yoshida
Claus Zinn
Berend Jan van der Zwaag

Additional Reviewers
Árbitros adicionales

Juan C. Acosta Guadarrama
Héctor Gabriel Acosta Mesa
Teddy Alfaro
Miguel A. Alonso
José Ramón Arrazola
Stella Asiimwe
Séverine Bérard
Fco. Mario Barcala Rodríguez
Axel Arturo Barcelo Aspeitia
Adam D. Barker
Alejandra Barrera
Gustavo E. A. P. A. Batista
Abderrahim Benslimane
Arturo Berrones
Bastian Blankenburg
Pascal Brisset
Andreas Bruening
Mark Buckley
Olivier Buffet
Diego Calvanese
Hiram Calvo
Niccolo Capanni
Carlos Castillo
Sutanu Chakraborti
Carlos Chesñevar
Federico Chesani
Wu Feng Chung
Murilo Coelho Naldi
Mark Collins
Jean François Condotta
Miguel Contreras
Sylvie Coste Marquis
Anne Cregan
Ronaldo Cristiano Prati
Juan A. Díaz
Víctor Manuel Darriba Bilbao
Michael Dekhtyar
Deepak Devicharan
Luca Di Gaspero
Marissa Diaz
Luigi Dragone
Edgar Duéñez
Mehmet Önder Efe

Arturo Espinosa Romero
Katti Faceli
Antonio Fernandez Caballero
Antonio Ferrández
Armin Fiedler
Alfredo Gabaldón
Arturo Galván Rodríguez
Ariel García
Cormac Gebruers
Karina Gibert
Andrea Giovannucci
Fernando Godínez
Giorgi Goguadze
Miguel González
Jorge Graña
Federico Guedea
Alejandro Guerra Hernández
Daniel Gunn
Everardo Gutiérrez
Christian Hahn
Emmanuel Hebrard
Benjamín Hernández
Martin Homik
Rodolfo Ibarra
Boyko Iliev
Bartosz Jablonski
Jean Yves Jaffray
Sylvain Jasson
Daniel Jolly
Narendra Jussien
Lars Karsson
Ryszard Klempous
Jerzy Kotowski
A. Krizhanovsky
Juan Carlos López Pimentel
David Lambert
Darío Landa Silva
Jérme Lang
Huei Diana Lee
Domenico Lembo
Paul Libberecht
Ana Carolina Lorena
Robert Lothian

Henryk Maciejewski
Fernando Magan Muñoz
Michael Maher
Donato Malerba
Salvador Mandujano
Ana Isabel Martinez Garcia
Patricio Martinez Barco
Jarred McGinnis
Andreas Meier
Manuel Mejia Lavalle
Corrado Mencar
Thomas Meyer
Thomas Meyer
Erik Millan
Monica Monachini
Rebecca Montanari
Andrés Montoyo
Jaime Mora Várgas
José Andrés Moreno Pérez
Rafael Muñoz
Martin Muehlenbrock
Rahman Mukras
Amedeo Napoli
Gonzalo Navarro
Adeline Nazarenko
Juan Carlos Nieves
Peter Novak
Slawomir Nowaczyk
Oscar Olmedo Aguirre
Magdalena Ortiz de la Fuente
María Osorio
Joaquín Pacheco
Marco Patella
Jesús Peral
Mats Petter Pettersson
Steven Prestwich
Bernard Prum
José Miguel Puerta Callejón
Alonso Ramírez Manzanárez
Fernando Ramos
Orión Fausto Reyes Galaviz
Francisco Ribadas Peña
Fabrizio Riguzzi
Leandro Rodríguez Liñares
Juan A. Rodríguez Aguilar
Raquel Ros
Maximiliano Saiz Noeda

S. Sandeep
P. Sanongoon
Cipriano Santos
Vitaly Schetinin
Marvin Schiller
Przemyslaw Sliwinski
Jasper Snoek
Thamar Solorio
Claudia Soria
Eduardo J. Spinosa
Cyrill Stachniss
Ewa Szlachcic
Armagan Tarim
Choh Man Teng
Paolo Torroni
Elio Tuci
Carsten Ullrich
L. Alfonso Ureña López
Diego Uribe
Mars Valiev
Maria Vargas Vera
Wamberto Vasconcelos
José Luis Vega
José Luis Vicedo
Jesús Vilares Ferro
Mario Villalobos Arias
Nic Wilson
Sean Wilson
Claudia Zepeda
Juergen Zimmer

Impreso en los Talleres Gráficos
de la Dirección de Publicaciones
del Instituto Politécnico Nacional

Tresguerras 27, Centro Histórico, México, D.F.
Noviembre de 2005.

Printing 500 / Edición 500 ejemplares.

	1sub536_BPv8HVEr.pdf
	2sub169_Shv3ad0P.pdf
	3sub21_e0HjeETk.pdf
	5sub78.pdf
	6sub375_B0u8JrSL.pdf
	7sub528_vbzI5G6P.pdf
	8sub541_PEbdjgJX.pdf
	9sub187_Lka2Ww0U.pdf
	10sub467_kNXBo0t1.pdf
	11sub470_UOpQCB0R.pdf
	12sub75.pdf
	13sub172.pdf
	14sub77.pdf
	16sub258_IX3przrF.pdf
	For a given number of rules, k(2 , and a number of input variables, p(2 , the number of tuning parameters in the conventional approach , (2p+1)k, is greater than that in the new ap
	References

	15sub155_bEZTKg1F.pdf
	17sub136_cPDNWNNx.pdf
	18sub90_BI6ngFAu.pdf
	19sub266_vo8Ea0GRqr.pdf
	20sub85_M5eBJXbq.pdf
	21xsub526_OeW1sSWM.pdf
	22sub540.pdf
	23sub62_UnQ8w9Ja.pdf
	24sub561_vGfLHSNi.pdf
	25sub551_NmfpJzaT.pdf
	26sub538_H09sGpsL.pdf
	2 The optimal control problem
	2 Differential Evolution algorithms
	Extensions of DE and a smoother operator
	3 Multimodal optimal control of bifunctional catalyst blend

	4 Singular optimal control of the Park-Ramirez bioreactor
	5 Results and discussion
	Multimodal optimal control problem
	
	Results of table 1 represent the average of 10 runs regarding number of function evaluations (FE) and the objective function (J*). A measure of population convergence was defined as a difference between worst and best solution satisfied a given value
	Singular optimal control of Park-Ramirez bioreactor

	Generations
	Function Evaluations
	Generations
	Function Evaluations

	6 Conclusions
	7 References

	ADP88.tmp
	Series Editorial Board Comité Editorial de la Serie
	
	Formatting: Formación
	Sulema Torres Ramos

	Copyright © by Instituto Politécnico Nacional

	ADP98.tmp
	Series Editorial Board Comité Editorial de la Serie
	
	Formatting: Formación
	Sulema Torres Ramos

	Copyright © by Instituto Politécnico Nacional

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

