
WSDL Information Selection for Improving Web
Service Classification

Christian Sánchez-Sánchez1, Esaú Villatoro-Tello1,
Gabriela Ramı́rez-de-la-Rosa1, Héctor Jiménez-Salazar1, David Pinto2

1 Universidad Autónoma Metropolitana Unidad Cuajimalpa,
Departamento de Tecnoloǵıas de la Información,

División de Ciencias de la Comunicación y Diseño, México

2 Benemérita Universidad Autónoma de Puebla,
Facultad de Ciencias de la Computación, Puebla, México

{csanchez, evillatoro, gramirez, hjimenez}@correo.cua.uam.mx,
dpinto@cs.buap.mx

Abstract. Currently, the increasing number of available Web Services
(WS) over the Internet has induced the urgency for proposing new ways
for searching and categorizing such software pieces. Normally, WS func-
tionality is detailed through the WSDL description language, resulting in
a structured document that includes a great variety of features definition.
One of the WSDL inner features ”documentation” is designed to describe
the Web Service functionality, in natural language, which could help
to classify and find WS. Nevertheless, the majority of WS lack of that
description. To tackle this problem, this paper presents an analysis of the
WSDL inner feature information that can assist to classify WS, without
any extra data. The experiments carried out on three different WSDL
collections showed that only with minimal information is possible to
increase the performance of automatic WS classification.

Keywords. Web service classification, WSDL information analysis, fea-
ture selection.

1 Introduction

Nowadays, in the field of Software Development exists a strong motivation for
preserving and encouraging the use of certain programming styles and conven-
tions as recommended practices. Among the advantages of such conventions are
the following: i) high efficiency of software applications by means of distributed
systems, ii) collaborative applications through standard mechanisms, iii) loosely
coupled systems that allow software reuse, and, iv) costs reduction during the
software development phase.

Accordingly, Web Services (WS) emerged as software development mecha-
nisms that allow developers to fulfill previously mentioned characteristics. A
WS can be thought as a web application which uses XML based standards for

83

ISSN 1870-4069

Research in Computing Science 144 (2017)pp. 83–96; rec. 2017-09-05; acc. 2017-10-20

communicating with external systems for providing the necessary service for
the user [2]. Web services being a business trend over software applications,
contain encapsulated descriptions of their functionality (i.e., methods and func-
tions, usually known as description features) described as an abstract interface
by means of using standard Web Services Description Language (WSDL). For
locating desired services, users appeal for public registries like UDDI (Univer-
sal Description, Discovery and Integration) where by means of matching their
requirements to a set of registered services, users are able to obtain “relevant”
services. However, search functionality still is very simple and fails to account for
relationships between WS and users’ real needs [3]. A bigger problem is that not
all WS developers register their services and with the ever-increasing amount of
published WS on the Internet, the task of finding the correct service has become
a challenging issue in service-oriented computing [2, 3].

Another important aspect to consider is that in spite of fact that the WSDL
description is a structured document, it is hard for a common Internet user to
understand its content. One of the WSDL inner features “documentation” is
designed to describe the Web Service functionality in natural language, which
could help to classify and find WS. Nevertheless, it is very common that suppliers
do not include such documentation.

This is why the necessity of creating algorithms or methods that help in the
process of categorize and search WS becomes important. For this reason, in order
to fulfill that necessity, some questions were stated. (a) Is it possible to extract
enough understandable information (words) from WSDL documents?, and (b)
which information, from WSDL inner features, improve WS classification?

In order to answer these questions, this paper presents an analysis of the
WSDL inner feature information that can assist to classify WS without any
extra data. One characteristic of such information is that is expressed by words.

For the experiments we used WSDL standard collections, namely OWLS-TC3

v3 and v4, and ASSAM4. We show that some of the evaluated features improve
the classification performance achieving competitive results to the state of the
art.

The rest of this document is organized as follows. Section 2 presents some
related work concerning the automatic web services classification task. Section 3
describes how an WSDL document is conformed. Then, Section 4 describes used
datasets, experimental setup and obtained results by our proposed approach.
Finally, Section 5 depicts our conclusions and some future work directions.

2 Related Work

In the literature of WS classification, two different types of approaches can
be distinguished. Those that use external resources to build the classification
method, and those that do not need any external resources but just the descrip-
tion features contained in the WSDL document.

3 http://projects.semwebcentral.org/projects/owls-tc/
4 http://www.andreas-hess.info/projects/annotator/

84

Christian Sánchez-Sánchez, Esau Villatoro-Tello, Gabriela Ramírez-De-La-Rosa, et al.

Research in Computing Science 144 (2017) ISSN 1870-4069

On the one hand, among the external resources used by some approaches,
the most widely used is The United Nations Standard Products and Service
Code (UNSPSC), a standard taxonomy used to manually classify WS. This
taxonomy defines a five-level and tree-structured hierarchical classification. The
UNSPSC taxonomy was used by [9] to automatically classify WS using clustering
algorithms in two steps. First, it considers the terms contained in the metadata of
the WSDL documents to generate a tree structure representation of the WS, and
then it considers the underlying semantic relation among metadata structures,
such as, terms co-occurrences of words taken from the input, output and function
descriptions of the WSDL document: its description features. After these two
clustering results, Liang et al. [9] uses the taxonomy to assign a class to a WS
tree.

In the approach proposed by Wang et al. [16] the UNSPSC taxonomy is used
to generate a set of vectors for the training phase of the SVM algorithm. Given
a set of domains, each subtree found in the taxonomy under these domains are
treated as concept of that domain. They claim that the functional description
of a WS is always related to a set of concepts. Therefore, a vector is constructed
for each concept to represent a training document for the SVM algorithm. In
addition to UNSPSC taxonomy, in this work they used WordNet to provide
semantic similarity of concepts to weight the terms in the vector space model.
WordNet as external resource was also used by Boujarwah et al. [4] as a lexical
English database to generate conceptual graphs for each domain. Then, they
used the conceptual graphs generated to classify a new WS.

Another example of this kind of approaches is introduced by Yang et al. [18].
Using OWLS-TC4 dataset, words are extracted from the WSDL. An external
resource is used in order to identify abbreviations or if they are nouns or verbs.
The pre-processing step involves: splitting (verbs and nouns), eliminating stop
words, stemming and removing specific tags (web, service, input, output). Then
they tested 4 different classification algorithms Support Vector Machines (SVM),
Naive Bayes (NB), Decision Tree (DT) C4.5 and Neuronal Networks. Only words
from names of services, operations, inputs and outputs were extracted. The best
results for classification was obtained using output name words and applying
C4.5 DT Algorithm.

In the approach introduced by Nisa et al. [11] were extracted: service name,
service documentation, WSDL messages, WSDL ports and WSDL schema from
WSDL documents, in order to classify web services using text mining. For
each extracted feature that was classified, using Maximum Entropy, a compar-
ison of the accuracy, through different categories, was done. The best results
were obtained including WSDL Schemas information. In this paper it is also
showed a comparison of the effects of using some preprocessing like: steeming,
lemmatization and word splitter. The results were improved using the last two.
Unfortunately, their dataset is not available for comparison.

On the other hand, there are WS classification methods developed with-
out using any external resource to classify WS, these methods usually rely on
the WSLD description features only (Section 3). For instance, Saha et al. [12]

85

WSDL Information Selection for Improving Web Service Classification

Research in Computing Science 144 (2017)ISSN 1870-4069

propose a WS representation based on Tensor Space Model (TSM) in order to
capture the internal structure of WSDL documents. The method consists in
selecting a set of relevant tags from a WSDL document. For each tag, they build
a tensor using all words under that particular tag. For each tensor they apply a
classification algorithm that gave independent classification results and as a final
step they combine all this information using rough sets. Another example is given
by Bruno et al. [5], where for classifying a WS, authors identified key concepts
in the WSDL description features, and then by means of a SVM algorithm, they
classify each WS into a specific domain.

Notice that all related work shown above used, in some way, the information
of the WSDL description file. However, some works use it merely as source of
terms to construct more elaborate representation, and some of them use it as the
main source of information to the classification. Consequently, these previous re-
search demonstrate, to some extent, that there exists a relationship between WS
functionality and the information contained in the WSDL document, opposite
to what Lu et al. claim [10].

Contrary to previous work, our proposed approach do not depend on any
external resources during the classification phase. Also, the information gotten
from the WSDL inner features are words, many of previous approaches worked
using strings.

3 A WSDL Document

As we have mentioned in previous sections, employing the WSDL language
for describing WS functionality is a recommended practice among software de-
velopers. Accordingly, as examples of the information that a user can obtain
from reviewing the WSDL document (i.e., the description features) we have the
following:

– Types- a container for data type definitions using some type system (i.e.,
data types).

– Messages- an abstract typed definition of the data being communicated,
messages normally tend to include parameters information and communica-
tion protocols.

– Operations- an abstract description of all actions supported by the web
service (i.e., methods’ names).

– Documentation- natural language description of the full functionality (op-
erations) of the web service (usually missing).

– Port Type- an abstract set of operations supported by one or more end-
points.

– Binding- a concrete protocol and data format specification for a particular
port type.

– Port- a single endpoint defined as a combination of a binding and a network
address.

– Service- a collection of related endpoints.

86

Christian Sánchez-Sánchez, Esau Villatoro-Tello, Gabriela Ramírez-De-La-Rosa, et al.

Research in Computing Science 144 (2017) ISSN 1870-4069

Fig. 1. An excerpt of a real WSDL document from the domain FOOD extracted from
the OWLS-TC V3 collection. Notice that any documentation has been provided.

According to Stroulia et al. [15], information like services’ names associated
to its methods, parameters and data types are useful since they reflect (to
some extent) the semantics of the underlying capabilities. For this reason in
the proposed experiments, it is contemplated extracting information from inner
features and test which of them are useful to improve classification. Next, more
about the information extraction algorithm and document representation is
given.

3.1 Information Extraction Algorithm

For performed experiments we considered the following features: Service Name,
Operations, Documentation, Messages, and Types, configured in different ways.
Observe that only the Documentation feature represents a text described in
natural language, hence, extracting information of such feature do not represent
a complicate process. However, for the rest of the considered features, extracted
terms do not represent well formed words (See Figure 1), therefore we followed
the steps described in Algorithm 1 in order to extract more readable information
(words).

Notice that the proposed algorithm uses a method named generateSub-
strings, which aims at extracting all possible sub-strings from any composed
expression ei extracted from the description features. Proposed method performs
the following steps:

– Obtains all possible sub-strings from expression ei by means of computing
all the combinations of consecutive characters from ei.

– Obtains all sub-strings that start with a capital letter. Intuitively, composed
expressions will contain in fact several words, and as a common programming
practice, developers tend to set the first letter of each word in its capital form.

– Obtains all possible sub-strings from ei separated by some special character.
Similarly to previous point, it is also a common practice among developers
to use some set of special characters to separate composed expressions (e.g.,

.− =:,).

Finally, as can be noticed in Algorithm 1, once all possible sub-strings were
obtained, each word is checked for its existence within WordNet. We verify if

87

WSDL Information Selection for Improving Web Service Classification

Research in Computing Science 144 (2017)ISSN 1870-4069

that word is not a stop word5. Thus, at the end we have a set of words, extracted
from the description features. And those extracted words are used for classifying
the WS. It is worth mentioning that our proposed method employs WordNet
for identifying readable words only, but not for the classification process nor
to include other terms, which has been the traditional approach from previous
works (see section 2).

input : expression ei extracted from the description
features and a list of stop words swList

output: list (listOfWords) of readable words extracted
from ei

1 //If the given expression ei is a known word in WordNet (WN)

then listOfWords is composed by ei
2 if ((ei ∈WN) and (ei 6∈ swList)) then
3 Add ei to listOfWords;
4 return listOfWords;
5 end

6 //If FALSE, we begin the process to extract all possible

words from ei
7 else
8 substrings← generateSubstrings(ei);
9 //For each obtained sub-string from ei we verify if it

represents a readable word

10 for i← 1 to |substrings| do
11 if ((substrings[i] ∈WN) and (substrings[i] 6∈ swList)) then
12 Add substrings[i] to listOfWords;
13 end

14 end
15 return listOfWords;
16 end
17 Exit;

Algorithm 1: Proposed algorithm for extracting information from
WSDL features.

3.2 Document Representation

As we have mentioned before, we face the problem of Web Services classification
as a document classification task. Although document classification subsumes
two types of text analyses: clustering and categorization. The difference between

5 Normally, stop words are formed by short function words, such as the, is, at, which,
and on; i.e., prepositions, pronouns, etc.

88

Christian Sánchez-Sánchez, Esau Villatoro-Tello, Gabriela Ramírez-De-La-Rosa, et al.

Research in Computing Science 144 (2017) ISSN 1870-4069

the two is that the latter uses a predefined number of classes or categories with
their corresponding tags, whereas in the former approach, the number and the
tag for each category is to be discovered. Since in categorization the classes are
known a priori, categorization algorithms usually take advantage of them by
using supervised algorithms with some kind of training step.

Accordingly, Text Categorization (TC) is the task of automatically sorting a
set of documents into categories (or classes, or topics) from a predefined set [13].
In its simplest form, the text classification problem can be formulated as follows:
Given a set of training documents DTr = {d1, . . . , dn} and a set of predefined
categories C = {c1, . . . , cm}, the goal of TC is to devise a learning algorithm that
is able to generate a classification model (i.e., hypothesis) h : D → C that will
be able to accurately classify unseen documents from D.

The design of learning algorithms for text categorization has usually followed
the classical approach of the pattern recognition field, where data instances
(i.e., documents) first undergo an appropriate representation. Accordingly, the
first step corresponds to the indexing of training documents (DTr), where each
document dj is transformed into a compact form of its content. Commonly, each
document is represented as a vector of weighted terms; such idea is taken from the
Vector Space Model proposed in the field of Information Retrieval [1]. Therefore,

given a document dj ∈ DTr, it is represented as a vector
−→
d j = 〈wkj , . . . , w|τ |j〉,

where τ depicts the dictionary, i.e., the set of different terms (words) that appear
at least once in some document of DTr, and wkj establishes the importance of
term tk within document dj .

Normally, τ is obtained from filtering words from the document collection,
in other words, τ is the result of a pre-processing step. As pre-processing step
all stop-words were removed. Once τ has been defined, in order to represent
the documents dj ∈ DTr, we employed the well known Bag of Words (BOW)
paradigm.

The BOW representation has been the traditional form for representing
documents [13]. Such approach employs single words as elements of the vector of
terms. There are several proposals for computing the weight wk,j of each term
(i.e., the importance of each term/word). Among the most successful weighting
strategies are: the boolean weight, term frequency and relative term frequency.
Next we briefly describe each one of these weighting schemes.

– Boolean weighting: It assigns a weight of 1 if the term tk appears within the
document dj , otherwise the value assigned is zero:

wkj =

{
1, if tk ∈ dj
0, otherwise.

(1)

– Term frequency weighting (TF): For this particular case, the assigned weight
will be equal to the number of times the term tk occurs within document dj :

wkj = fkj . (2)

– Relative Term Frequency weighting (TF-IDF): This type of weighting scheme
represents a variation from the TF technique. For computing the TF-IDF

89

WSDL Information Selection for Improving Web Service Classification

Research in Computing Science 144 (2017)ISSN 1870-4069

weight we must follow:

wkj = TF (tk)× IDF (tk). (3)

where TF (tk) = fkj , in other words, it represents the frequency value of
term tk within document dj . IDF is also known as the “inverse frequency”
of term tk within document dj . The IDF value represent to some extent how
“rare” is term tk. For computing the IDF value we follow:

IDF (tk) = log
|D|

{dj ∈ D : tk ∈ dj}
. (4)

where D represents the document collection that is being indexed, i.e., DTr

3.3 Classifiers

Since our proposal for WSDL document representation does not dependent of a
particular learning algorithm we can use any classifier to face the WS classifi-
cation problem. For our experiments we selected 3 different learning algorithms
which are representative of the wide diversity of methods available in the machine
learning field [6, 8]. Specifically, we considered the following classifiers:

– Näıve Bayes (NB). A probabilistic-based method that assumes attributes
are independent among them given the class.

– Support vector machine (SVM). A linear discriminant that aims to find
an optimal separating hyperplane; a linear kernel was used for this work.

– J48. An algorithm used to generate a decision tree, which select the most
discriminating features based on its entropy measure.

We employed the Weka implementation of the above described algorithms; de-
fault parameters were considered for all the performed experiments [7].

4 Experimental Setup

4.1 Datasets

For all the experiments performed we used a subset of the ASSAM web services
collection. This collection is made up by real Web Services description docu-
ments, obtained from Salcentral [14] and Xmethods [17]. The WSDL documents
are organized into a class hierarchy, that in some cases have sub-classes with
at most two levels depth. Originally, this collection had 814 WSDL documents
distributed in 26 classes, however, in order to prove the pertinence of our pro-
posed approach we modified the collection applying the following steps: i) we
flatten all classes, i.e., we suit WSDL documents contained in parent classes
in some particular sub-classes, and ii) we discarded all WSDL documents that
do not contain at least one word (recognized by WordNet) for each considered
description feature (see Table 1 for details). Due to many of WS Descriptions

90

Christian Sánchez-Sánchez, Esau Villatoro-Tello, Gabriela Ramírez-De-La-Rosa, et al.

Research in Computing Science 144 (2017) ISSN 1870-4069

have the documentation feature, the classification of the information extracted
from this feature was taken as a baseline.

In addition to the previous collection, we also performed experiments using
the OWLS-TC collection (version 3 and version 4). Together the two datasets
contain more than 1000 WS, covering seven and nine categories respectively.
Contrary to the ASSAM collection, the documents of the collections OWLS-
TC V3 and V4 do not contain the documentation feature. Table 1 shows some
statistics from the considered datasets.

Table 1. Basic statistics from the considered datasets.

ASSAM TC-V3 TC-V4

Num. docs 203 1006 1082
Vocabulary 2829 283 378
Num. classes 22 7 9
Docs by class (Avg.) 9.2 143.7 120.2
Documentation (DOC) Yes No No
Terms in DOC (Avg.) 26.3 0 0

Notice that although the TC V3 and V4 are larger collections (i.e., they have
more WSDL documents), their vocabulary is smaller than the ASSAM collection.
The reason for this difference is that, documents from the ASSAM collection do
have the documentation feature. This characteristic can be observed also in the
last row of Table 1 (i.e., Terms in Doc), which indicates the average number of
terms for each WSDL document contained in the documentation feature.

It is also important to mention that the ASSAM collection represents a more
complicated challenge for classifications systems, just by the fact that it contains
more categories (22), and as a consequence, less examples for each class are
available (9.2 in average).

4.2 Evaluation

For evaluating the classifiers performance we adopted standard measures from
the text-categorization field. The leading evaluation measure is the macro F1

measure, defined as follows:

Macro− F1 =
1

|K|
∑
Ci∈C

[
2 × R(Ci) × P (Ci)

R(Ci) + P (Ci)

]
.

where the per-class recall (R) and precision (P) measures are defined as follows:

R(Ci) =
number of correct predictions of Ci

number of examples of Ci
,

and

P (Ci) =
number of correct predictions of Ci

number of predictions asCi
.

91

WSDL Information Selection for Improving Web Service Classification

Research in Computing Science 144 (2017)ISSN 1870-4069

It is worth mentioning that during our experiments we applied a 10 cross-fold
validation strategy.

4.3 Experimental Settings

The main goal of our experiments was to evaluate which of the information
extracted from WSDL inner features improves WS classification.

Accordingly, we considered for our experiments the following description
features: messages (Msgs), operations (Names) and types (Params)6.

Hypothetically, the Names attribute (i.e., name of a method in the WS)
might be part of the selected information, which it could be more precise when
includes the Parameter attribute (i.e., names of the parameters or data types).
Furthermore, if we combine these description features (Names and Parameters)
with the Messages attribute we expect that it will also contain enough informa-
tion to allow an automatic classifier to correctly define its category. Consequently,
we defined our experiments by means of using single features and its respective
combinations.

4.4 Results

The obtained experimental results are reported in Tables 2, 3 and 4 in terms
of macro F1. Results marked in bold indicate the best results obtained over
different configurations.

Table 2 shows the results obtained when the ASSAM WSDL document
collection is used. The first column (i.e., “Description features”) indicates the
description features from which information was extracted. Notice that better
results are obtained when a boolean representation is employed, which means that
just by the presence of certain words it is possible to assign the WS category.

Table 2. Results of the experiments performed using the ASSAM collection.

Description BOOLEAN TF-IDF
features NB SVM J48 NB SVM J48

Msgs 0.37 0.38 0.34 0.27 0.31 0.31
Names 0.41 0.43 0.34 0.32 0.35 0.32
Params 0.39 0.39 0.34 0.33 0.36 0.36
Names+Msgs 0.41 0.41 0.36 0.25 0.34 0.35
Names+Param 0.42 0.43 0.34 0.36 0.38 0.27
Msgs+Params 0.40 0.35 0.32 0.33 0.36 0.30
Names+Msgs+Params 0.44 0.40 0.32 0.34 0.37 0.29

The obtained results indicate that when the Names feature is involved in the
information extracted better results are reached. Although the best result was

6 Refer to Section 3 to view a detailed description of the selected features.

92

Christian Sánchez-Sánchez, Esau Villatoro-Tello, Gabriela Ramírez-De-La-Rosa, et al.

Research in Computing Science 144 (2017) ISSN 1870-4069

obtained by the combination of Names+Msgs+Params employing a Bayesian
classifier, but the combination of Names+Params allows a more stable behavior.
This situation indicates (to some extent) that methods’ names as well as the pa-
rameters have an important role on the definition of a Web service functionality,
hence providing important elements to define the WS category.

Table 3 and Table 4 exhibit the results obtained on the OWLS-TC V3 and
V4 collections respectively. Similarly to the results obtained on the ASSAM
collection, better results are obtained under the combinations of the Names and
Params description features.

Table 3. Results of the experiments performed using the OWLS-TC V3 collection.

Description BOOLEAN TF-IDF
features NB SVM J48 NB SVM J48

Msgs 0.48 0.55 0.37 0.47 0.55 0.37
Names 0.71 0.77 0.68 0.70 0.79 0.70
Params 0.73 0.78 0.79 0.62 0.80 0.80
Names+Msgs 0.71 0.77 0.68 0.69 0.78 0.70
Names+Param 0.79 0.86 0.82 0.77 0.85 0.83
Msgs+Params 0.77 0.85 0.83 0.73 0.85 0.85
Names+Msgs+Params 0.80 0.86 0.82 0.77 0.86 0.83

Notice that a better performance is obtained under a boolean weighting
scheme. This indicates that WS categories can be determined by just the pres-
ence of certain words, which lead us to consider that counting the frequencies
downgrades the classifier’s performance.

Table 4. Results of the experiments performed using the OWLS-TC V4 collection.

Description BOOLEAN TF-IDF
features NB SVM J48 NB SVM J48

Msgs 0.47 0.52 0.37 0.44 0.53 0.37
Names 0.70 0.76 0.67 0.69 0.78 0.68
Params 0.74 0.79 0.78 0.65 0.80 0.81
Names+Msgs 0.70 0.76 0.67 0.69 0.75 0.68
Names+Param 0.81 0.86 0.82 0.77 0.86 0.84
Msgs+Params 0.78 0.85 0.82 0.75 0.86 0.85
Names+Msgs+Params 0.81 0.86 0.82 0.77 0.86 0.84

Similarly to the results obtained when the ASSAM collection is used, the
combination of Names+Params allows to the classifier to reach an acceptable
classification performance on both, the OWLS-TC V3 and V4 datasets. These
particular results reinforce our intuition that extracting only information from
some WSDL features can improve classification.

93

WSDL Information Selection for Improving Web Service Classification

Research in Computing Science 144 (2017)ISSN 1870-4069

Finally, it is important to mention that the results obtained on the OWLS-TC
V3 (Table 3) are directly comparable against results reported on [16] and [4]. On
the one hand, Wang et al. [16] reports an F measure of 89% using a SVM with a
lineal kernel. However, it important to remember that their proposed approach
depends on the UNSPSC taxonomy (see Section 2).

On the other hand, the work proposed in [4] reports an average precision (P)
of 65% and an average recall (R) of 70%. Their proposed approach, similarly to
[16], depends on the UNSPSC taxonomy and WordNet (see Section 2). Although
our results are reported in terms of the macro F1, the average precision and
average recall for our best configuration (i.e., Names+Msgs+Params using a
SVM classifier in Table 3) are 87% and 86% respectively. In conclusion, our
proposed approach is able to obtain a competitive performance against the state-
of-the-art methods [4, 16] without needing or employing any external resource
during the classification stage.

4.5 Additional Experiment

As we have mentioned in previous sections, it is believed that considering only
the information contained in the documentation feature can improve WS clas-
sification. Accordingly, an intuitive comparison of such a system would be to
contrast the obtained classification results against a system that uses the original
documentation feature for representing and classifying WSDL documents.

On section 4.1 we showed that the only dataset that actually contains the
documentation feature is the ASSAM collection (See Table 1). Hence, we per-
formed an additional experiment over the ASSAM collection, where our main
goal was to explore the pertinence of this particular feature when classifying
WSDL documents (See Figure 2).

Notice that by using only the original documentation feature (Doc) the
classification performance gets the worse results. Particularly for the Bayesian
classifier, goes from a macro F1 of 44% using the Names+Msgs+Params features
to a 37% using only the original documentation feature. This result indicates,
to some extent, that documentation provided by WS suppliers tends to be am-
biguous and it introduces noisy elements to an automatic classification system.

Finally, it is worth mentioning that according to the paired Student’s t-test
- with a confidence level of 99 percent - the improvement obtained using Names
+ Params with both classifiers (i.e., NB and SVM) are statistically significant
over the results obtained employing only the documentation feature.

5 Conclusions

We have introduced an analysis of the combination of WSDL inner feature
information that can assist to classify WS, without any extra data. These in
order to select the information that improves WS categorization.

We report experiments on three different WSDL collections; the obtained
results indicate that selecting only information from some WSDL inner features

94

Christian Sánchez-Sánchez, Esau Villatoro-Tello, Gabriela Ramírez-De-La-Rosa, et al.

Research in Computing Science 144 (2017) ISSN 1870-4069

Fig. 2. Comparison of the classification performance when the documentation feature is
employed to represent WSDL documents against using several description features for
the construction of the proposed virtual feature. All the experiments were performed
using the ASSAM collection.

can obtain a competitive performance against the state-of-the-art methods. The
performed experiments showed that by means of combining the operations’
names and parameters it is possible to obtain a macro F1 of 86% for the OWLS-
TC collections. Similar results were obtained on the ASSAM collection when we
used the same combination of information extracted from WSDL features.

An additional experiment showed that the names and parameters information
combination allows better classification results compared to those obtained when
WSDL documents are represented by means of the documentation feature. A
more deeper analysis demonstrate that the information from selected description
features are able to generate a less complex and more general description of WS
functionality. On the contrary, by using only the documentation feature results
in a more complex and highly specific description of WS functionality, which
leads to a less accurate classification process.

Future work directions include using Distributional Term Representations
which have proven to be effective on reducing the effect of low term frequency
occurrence, sparsity and term ambiguity, which are common characteristics of
WSDL documents.

Acknowledgments. This work was partially funded by CONACYT under the
Thematic Networks program (Language Technologies Thematic Network project
281795).

References

1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley
(1999)

95

WSDL Information Selection for Improving Web Service Classification

Research in Computing Science 144 (2017)ISSN 1870-4069

2. Balasubramanian, D.L., Murugaiyan, S.R., Sambasivam, G., T., V., Dhavachelvan,
P.: Semantic web service clustering using concept lattice: Multi agent based
approach. International Journal of Engineering and Technology 5(5), 3699–3714
(2013)

3. Batra, S., Bawa, S.: Web service categorization using normalized similarity score.
Internaitonal Journal of Computer Theory and Engineering 2(1), 139–141 (2010)

4. Boujarwah, E., Yahyaoui, H., Almulla, M.: A new unsupervised web services
classification based on conceptual graphs. In: ICIW 2013, The Eighth International
Conference on Internet and Web Applications and Services. pp. 90–94 (2013)

5. Bruno, M., Canfora, G., Penta, M.D., Scognamiglio, R.: An approach to support
web service classification and annotation. In: EEE. pp. 138–143. IEEE Computer
Society

6. Duda, R., Hart, P.: Pattern classification and scene analysis. Wiley (1996),
http://www.ica.luz.ve/ enava/redesn/ebooks/DHS/Versi%F3n PS/DHSChap4.ps

7. Garner, S.R.: Weka: The waikato environment for knowledge analysis. In: Proc.
of the New Zealand Computer Science Research Students Conference. pp. 57–64
(1995)

8. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer (2009)

9. Liang, Q., Li, P., Hung, P., Wu, X.: Clustering web services for automatic catego-
rization. In: Services Computing, 2009. SCC ’09. IEEE International Conference
on. pp. 380–387 (Sept 2009)

10. Lu, G., Wang, T., Zhang, G., Li, S.: Semantic web services discovery based on
domain ontology. In: World Automation Congress (WAC), 2012. pp. 1–4 (2012)

11. Nisa, R., Qamar, U.: A text mining based approach for web service classification.
Information Systems and e-Business Management 13(4), 751–768 (2015)

12. Saha, S., Murthy, C.A., Pal, S.K.: Classification of web services using tensor space
model and rough ensemble classifier. In: An, A., Matwin, S., Ras, Z.W., Slezak, D.
(eds.) ISMIS. Lecture Notes in Computer Science, vol. 4994, pp. 508–513. Springer
(2008)

13. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput-
ing Surveys 34(1), 1–47 (2002)

14. Seekda: http://webservices.seekda.com/ (2012), last visited on September 2014
15. Stroulia, E., Wang, Y.: Structural and semantic matching for assessing web-service

similarity. International Journal of Cooperative Information Systems 5(14), 407–
437 (2005)

16. Wang, H., Shi, Y., Zhou, X., Zhou, Q., Shao, S., Bouguettaya, A.: Web service
classification using support vector machine. In: 22nd IEEE International Confer-
ence on Tools with Artificial Intelligence (ICTAI). vol. 1, pp. 3–6. IEEE Computer
Society (2010)

17. Xmethods: http://xmethods.net/ve2/index.po (2013), last visited on September
2014

18. Yang, J., Zhou, X.: Semi-automatic web service classification using machine
learning. International Journal of u-and e-Service, Science and Technology 8(4),
339–348 (2015)

96

Christian Sánchez-Sánchez, Esau Villatoro-Tello, Gabriela Ramírez-De-La-Rosa, et al.

Research in Computing Science 144 (2017) ISSN 1870-4069

